Set Reconciliation and Error-Correcting Code, via IBLTs

Set Reconciliation

Alice

Bob

\[S \subseteq \mathbb{N} \quad T \subseteq \mathbb{N} \]

Goal: Identify \(S \setminus T \) using communication \(O(\|S\| \log \|S\| + \|T\| \log \|T\|) \).

Solution: Alice inserts all elements of \(S \) into IBLT of size \(O(\|S\|) \). Sends IBLT to Bob.

Bob deletes each element of \(T \) from IBLT, then calls the IBLT lookup procedure to recover \(S \setminus T \).

Error-Correcting Codes

- **Goal:** Convey the message \(m \) to Bob. Assume we know an upper bound \(B \) on the number of symbols of the message that the channel will corrupt. Need to add redundancy to \(m \) so that Bob can correct errors introduced by the channel.

- **Solution:** For \(i = 1, \ldots, l \), Alice inserts \((i, m_i) \) into an IBLT of size \(O(B) \).

- Alice sends IBLT to Bob, as well as the IBLT. Assume IBLT is uncorrupted by the channel.

- Bob recovers the corrupted message \(m' \) and deletes \((i, m_i) \) for \(i = 1, \ldots, l \) from IBLT.

Bob then calls IBLT lookup procedure to recover the difference between \(m \) and \(m' \).

This ignores the issue that the channel might corrupt the IBLT as well. To address this, one can apply a different error-correcting code to the IBLT.
Goal: Given a turnstile stream, output a uniform random item i with \(\frac{1}{N} \), i.e., if N items have \(f_{c}(i) \), output each with probability \(\frac{1}{N} \).

Note: In insert-only streams, this problem is trivial (e.g., store item w/ smallest hit value seen).

Solution: For \(j = 1 \ldots \log N \), let \(T_j \) be an IBLT of size \(O(1) \) and let \(h_j : [N] \rightarrow [2^j] \) be a random hash function.

While processing update \((a_i, f_i) \):

 For \(j = 1 \ldots \log N \):

 if \(h_j(a_i) = 1 \) then call insert \((T_j, a_i, f_i) \).

At end of stream, find a \(T_j \) for which \(LST(T_j) \) succeeds and returns at least 1 item. Output a random item returned by \(T_j \).

Total space: \(O(\log^3 N) \) bits.

Claim: Let \(j = \left\lceil \log \frac{F_0}{10} \right\rceil \). Then with probability at least \(1 - \frac{1}{10} \cdot \frac{1}{2} > 0.53 \), between 1 and 10 items have non-zero frequency satisfies \(h_j(i) = 0 \).

\[
\mathbb{E} \left[\min_{i \in [N]} f_{c}(i) \text{ and } h_j(i) = 1 \right] = \frac{F_0}{2^j} \mathbb{E} [X_{hid}] \quad \text{so Markov } \Rightarrow \quad \Pr \left[\min_{i \in [N]} f_{c}(i) = 1 \right] \leq \frac{1}{10}.
\]

\[
\Pr \left[\min_{i \in [N]} f_{c}(i) = 1 \right] \leq \left(1 - \frac{1}{2^j}\right)^{F_0} \leq \frac{1}{e}.
\]