
CS124 Lecture 6 Spring 2011

Disjoint set (Union-Find)

For Kruskal’s algorithm for the minimum spanning tree problem, we found that we needed a data structure for

maintaining a collection of disjoint sets. That is, we need adata structure that can handle the following operations:

• MAKESET(x) - create a new set containing the single elementx

• UNION(x,y) - replace two sets containingx andy by their union.

• FIND(x) - return the name of the set containing the elementx

Naturally, this data structure is useful in other situations, so we shall consider its implementation in some detail.

Within our data structure, each set is represented by a tree,so that each element points to a parent in the tree.

The root of each tree will point to itself. In fact, we shall use the root of the tree as the name of the set itself; hence

the name of each set is given by a canonical element, namely the root of the associated tree.

It is convenient to add a fourth operation LINK(x,y) to the above, where we require for LINK thatx andy are

two roots. LINK changes the parent pointer of one of the roots, sayx, and makes it point toy. It returns the root

of the now composite treey. With this addition, we have UNION(x,y) = LINK(FIND (x),FIND(y)), so the main

problem is to arrange our data structure so that FIND operations are very efficient.

Notice that the time to do a FIND operation on an element corresponds to its depth in the tree. Hence our goal is

to keep the trees short. Two well-known heuristics for keeping trees short in this setting are UNION BY RANK and

PATH COMPRESSION. We start with the UNION BY RANK heuristic.The idea of UNION BY RANK is to ensure

that when we combine two trees, we try to keep the overall depth of the resulting tree small. This is implemented as

follows: the rank of an elementx is initialized to 0 by MAKESET. An element’s rank is only updated by the LINK

operation. Ifx andy have the same rankr, then invoking LINK(x,y) causes the parent pointer ofx to be updated to

point toy, and the rank ofy is then updated tor + 1. On the other hand, ifx andy have different rank, then when

invoking LINK(x,y) the parent point of the element with smaller rank is updated to point to the element with larger

rank. The idea is that the rank of the root is associated with the depth of the tree, so this process keeps the depth

small. (Exercise: Try some examples by hand with and without using the UNION BY RANK heuristic.)

6-1



Lecture 6 6-2

The idea of PATH COMPRESSION is that, once we perform a FIND onsome element, we should adjust its

parent pointer so that it points directly to the root; that way, if we ever do another FIND on it, we start out much

closer to the root. Note that, until we do a FIND on an element,it might not be worth the effort to update its parent

pointer, since we may never access it at all. Once we access anitem, however, we must walk through every pointer

to the root, so modifying the pointers only changes the cost of this walk by a constant factor.

A nice way to think of PATH COMPRESSION is that it is a form of insurance, that we’re only willing to pay if

we access an item. If we access an item, we’re willing to pay toupdate its parent pointer to point directly to the root

in case we access the item again in the future. If we don’t access an item once, we don’t bother to pay the insurance.

This way, we ensure our insurance costs us at most a constant factor more than we would pay otherwise. That may

still seem like a high price for insurance, but in our worst-case analysis world, constant factors don’t matter.

procedure MAKESET(x)
p(x) := x
rank(x) := 0

end

function FIND(x)
if x 6= p(x) then

p(x) := FIND(p(x))
return(p(x))

end

function LINK(x,y)
if rank(x) > rank(y) thenx ↔ y
if rank(x) = rank(y) then rank(y) := rank(y)+1
p(x) := y
return(y)

end

procedure UNION(x,y)
LINK(FIND (x),FIND(y))

end

In our analysis, we show that any sequence ofm UNION and FIND operations onn elements take at most

O((m + n) log∗ n) steps, where log∗ n is the number of times you must iterate the log2 function onn before getting



Lecture 6 6-3

a number less than or equal to 1. (So log∗4 = 2, log∗16 = 3, log∗ 65536= 4.) We should note that this is not the

tightest analysis possible; however, this analysis is already somewhat complex!

Note that we are going to do anamortized analysis here. That is, we are going to consider the cost of the

algorithm over a sequence of steps, instead of considering the cost of a single operation. In fact a single UNION or

FIND operation could requireO(logn) operations. (Exercise: Prove this!) Only by considering an entire sequence

of operations at once can obtain the above bound. Our argument will require some interesting accounting to total the

cost of a sequence of steps.

We first make a few observations about rank.

• if v 6= p(v) then rank(p(v)) > rank(v)

• wheneverp(v) is updated, rank(p(v)) increases

• the number of elements with rankk is at most n
2k

• the number of elements with rank at leastk is at most n
2k−1

The first two assertions are immediate from the description of the algorithm. The third assertion follows from

the fact that the rank of an elementv changes only if LINK(v,w) is executed, rank(v) = rank(w), andv remains

the root of the combined tree; in this casev’s rank is incremented by 1. A simple induction then yields that when

rank(v) is incremented tok, the resulting tree has at least 2k elements. The last assertion then follows from the third

assertion, as∑∞
j=k

n
2j = n

2k−1 .

Exercise: Show that the maximum rank an item can have is logn.

As soon as an element becomes a non-root, its rank is fixed. Letus divide the (non-root) elements into groups

according to their ranks. Groupi contains all elements whose rankr satisfies log∗ r = i. For example, elements in

group 3 have ranks in the range(4,16], and the range of ranks associated with groupi is (2i−1,22i−1
). For convenience

we shall write this more simply by saying group(k,2k] to mean the group with these ranks.

It is easy to establish the following assertions about thesegroups:

• The number of distinct groups is at most log∗ n. (Use the fact that the maximum rank is logn.)

• The number of elements in the group(k,2k] is at most n
2k .



Lecture 6 6-4

Let us assign 2k tokens to each element in group(k,2k]. The total number of tokens assigned to all elements

from that group is then at most 2k n
2k = n, and the total number of groups is at most log∗ n, so the total number of

tokens given out isn log∗ n. We use these tokens to account for the work done by FIND operations.

Recall that the number of steps for a FIND operation is proportional to the number of pointers that the FIND

operation must follow up the tree. We separate the pointers into two groups, depending on the groups ofu and

p(u) = v, as follows:

• Type 1: a pointer is of Type 1 ifu andv belong to different groups, orv is the root.

• Type 2: a pointer is of Type 2 ifu andv belong to the same group.

We account for the two Types of pointers in two different ways. Type 1 links are “charged” directly to the FIND

operation; Type 2 links are “charged” tou, who “pays” for the operation using one of the tokens. Let us consider

these charges more carefully.

The number of Type 1 links each FIND operation goes through isat most log∗ n, since there are only log∗ n

groups, and the group number increases as we move up the tree.

What about Type 2 links? We charge these links directly back to u, who is supposed to pay for them with a

token. Doesu have enough tokens? The point here is that each time a FIND operation goes through an elementu,

its parent pointer is changed to the current root of the tree (by PATH COMPRESSION), so the rank of its parent

increases by at least 1. Ifu is in the group(k,2k], then the rank ofu’s parent can increase fewer than 2k times before

it moves to a higher group. Therefore the 2k tokens we assign tou are sufficient to pay for all FIND operations that

go throughu to a parent in the same group.

We now count the total number of steps form UNION and FIND operations. Clearly LINK requires justO(1)

steps, and since a UNION operation is just a LINK and 2 FIND operations, it suffices to bound the time for at most

2m FIND OPERATIONS. Each FIND operation is charged at most log∗ n for a total ofO(m log∗ n). The total number

of tokens used at mostn log∗ n, and each token pays for a constant number of steps. Therefore the total number of

steps isO((m + n) log∗ n).

Let us give a more equation-oriented explanation. The totaltime spent over the course ofm UNION and FIND

operations is just

∑
all FIND ops

(# links passed through).



Lecture 6 6-5

We split this sum up into two parts:

∑
all FIND ops

(# links in same group)+ ∑
all FIND ops

(# links in different groups).

(Technically, the case where a link goes to the root should behandled explicitly; however, this is justO(m) links in

total, so we don’t need to worry!) The second term is clearlyO(m log∗ n). The first term can be upper bounded by:

∑
all elementsu

(# ranks in the group ofu),

because each elementu can be charged only once for each rank in its group. (Note herethat this is because the links

to the root count in the second sum!) This last sum is bounded above by

∑
all groups

(# items in group) · (# ranks in group) ≤
log∗ n

∑
k=1

n
2k 2k ≤ n log∗ n.

This completes the proof.

x y y

x

a

b

c

d

UNION(x,y)

FIND(d)

a

b c d

Figure 6.1: Examples of UNION BY RANK and PATH COMPRESSION.


