CS124 Lectureb Spring 2011

Minimum Spanning Trees

A tree is an undirected graph which is connected and acydliés easy to show that if grap®(V,E) that

satisfies any two of the following properties also satisfiesthird, and is therefore a tree:

e G(V,E) is connected
e G(V,E) is acyclic

e E|=|V|-1

(Exercise: Show that any two of the above properties implies the thisg (mduction).)

A spanning tree in an undirected grapB(V,E) is a subset of edgek C E that are acyclic and connect all the
vertices inV. It follows from the above conditions that a spanning treessihmonsist of exactiyn— 1 edges. Now
suppose that each edge has a weight associated with . — Z. Say that the weight of a trékis the sum of the
weights of its edgesy(T) = Y 7 W(€). Theminimum spanning tree in a weighted grapls(V, E) is one which has

the smallest weight among all spanning tree&{N/,E).

As an example of why one might want to find a minimum spannieg,tconsider someone who has to install
the wiring to network together a large computer system. Eagirement is that all machines be able to reach each
other via some sequence of intermediate connections. Bgsepting each machine as a vertex and the cost of
wiring two machines together by a weighted edge, the prol@d&fimding the minimum cost wiring scheme reduces

to the minimum spanning tree problem.

In general, the number of spanning treesSifV, E) grows exponentially in the number of verticesGiV, E).
(Exercise: Try to determine the number of different spanning trees foomplete graph on vertices.) Therefore
it is infeasible to search through all possible spanninggr® find the lightest one. Luckily it is not necessary
to examine all possible spanning trees; minimum spanniggstsatisfy a very important property which makes it

possible to efficiently zoom in on the answer.

We shall construct the minimum spanning tree by succegssadkecting edges to include in the tree. We will

guarantee after the inclusion of each new edge that thetedledgesX, form a subset of some minimum spanning

5-1

Lecture 5 5-2

tree, T. How can we guarantee this if we don’t yet know any minimunmnsirag tree in the graph? The following

property provides this guarantee:

Cut property: Let X C T whereT is a MST inG(V,E). Let SC V such that no edge iX crosses betweef
andV — S, i.e. no edge irX has one endpoint iBand one endpoint i — S. Among edges crossing betweSand

V —S letebe an edge of minimum weight. Theflu {e} C T’ whereT’ is a MST inG(V,E).

The cut property says that we can construct our gesedily. Our greedy algorithms can simply take the
minimum weight edge across two regions not yet connecteéntaally, if we keep acting in this greedy manner,
we will arrive at the point where we have a minimum spannimg trAlthough the idea of acting greedily at each
point may seem quite intuitive, it is very unusual for suchrategy to actually lead to an optimal solution, as we

will see when we examine other problems!

Proof: Supposee ¢ T. Addingeinto T creates a unique cycle. We will remove a single edgfeom this
unique cycle, thus getting’ = T U {e} — {€'}. Itis easy to see that’ must be a tree — it is connected and has
n— 1 edges. Furthermore, as we shall show below, it is alwaysilplesto select an edgg in the cycle such that it
crosses betweeBandV — S Now, sinceeis a minimum weight edge crossing betwegandV — S w(€) > w(e).
Thereforew(T’) = w(T) +w(e) —w(€) < w(T). However sinceT is a MST, it follows thafT’ is also a MST and
w(e) = w(€'). Furthermore, sinc& has no edge crossing betweBrandV — S it follows thatX C T’ and thus

Xu{e} CT.

How do we know that there is an edge# e in the unique cycle created by addiagnto T, such thag crosses
betweerSandV — S? This is easy to see, because as we trace the emlesses betweedandV — S, and we must

cross back along some other edge to return to the starting. poi [

In light of this, the basic outline of our minimum spanningdralgorithms is going to be the following:

X:={}.

Repeat untilX| =n—1.
Pick a selSC V such that no edge X crosses betweeBandV — S
Let e be a lightest edge i6(V, E) that crosses betwee&andV — S
X :=XU{e}.

The difference between minimum spanning tree algorithesiti how we pick the s&at each step.

Prim’salgorithm:

Lecture 5 5-3

In the case of Prim’s algorithnX consists of a single tree, and the Sé¢ the set of vertices of that tree. One
way to think of the algorithm is that it grows a single treediag) a new vertex at each step, until it has the minimum
spanning tree. In order to find the lightest edge crossingideiS andV — S, Prim’s algorithm maintains a heap
containing all those vertices M — Swhich are adjacent to some vertex3n The priority of a vertexv, according
to which the heap is ordered, is the weight of its lightestestiga vertex inS. This is reminiscent of Dijkstra’s
algorithm (where distance was used for the heap insteaceafdbe weight). As in Dijkstra’s algorithm, each vertex
v will also have a parent pointer preg which is the other endpoint of the lightest edge freto a vertex inS. The

pseudocode for Prim’s algorithm is almost identical to fieatDijkstra’s algorithm:

Procedure PrinG(V,E), 9)
V,W: vertices
dist: arrayV] of integer
prev: arrayV| of vertices
S: set of vertices, initially empty
H: priority heap ofvV
H:={s:0}
forveV do
distv] := oo, pre\v] :=nil
rof
dists| :=0
whileH # 0
v := deletemirgh)
S:=SuU{v}
for (vw) € Eandw eV —Sdo
if dist[w] > length(v,w)
disfw] := length(v,w), prew] := v, insert{v,disfw]|,H)
fi
rof
end while end Prim

Note that each vertex is “inserted” on the heap at most ortbey insert operations simply change the value on
the heap. The vertices that are removed from the heap forsett®for the cut property. The sét of edges chosen
to be included in the MST are given by the parent pointers efvéirtices in the se&. Since the smallest key in the
heap at any time gives the lightest edge crossing betBegnlVV — S, Prim’s algorithm follows the generic outline

for a MST algorithm presented above, and therefore its ctmess follows from the cut property.

The running time of Prim’s algorithm is clearly the same ag&ra’s algorithm, since the only change is how

we prioritize nodes in the heap. Thus, if we use d-heaps,uthieimg time of Prim’s algorithm i@(mlogm/n n).

Kruskal’salgorithm:

Lecture 5 5-4

Kruskal's algorithm uses a different strategy from Primgasithm. Instead of growing a single tree, Kruskal's
algorithm attempts to put the lightest edge possible inrde d@t each step. Kruskal’s algorithm starts with the edges
sorted in increasing order by weight. Initially = { }, and each vertex in the graph regarded as a trivial tree (with
no edges). Each edge in the sorted list is examined in ondéiif #s endpoints are in the same tree, then the edge is
discarded; otherwise it is included ¥1and this causes the two trees containing the endpointsoétge to merge
into a single tree. Note that, by this process, weiamdicitly choosing a sef C V with no edge inX crossing

betweenSandV — S so this fits in our basic outline of a minimum spanning tregethm.

To implement Kruskal’s algorithm, given a forest of trees must decide given two vertices whether they
belong to the same tree. For the purposes of this test, eeelintthe forest can be represented by a set consisting of
the vertices in that tree. We also need to be able to updateatarstructure to reflect the merging of two trees into a
single tree. Thus our data structure will maintain a coitetof disjoint sets (disjoint since each vertex is in exactl

one tree), and support the following three operations:

e MAKESET(X): Create a hew containing only the element
e FIND(X): Given an element, which set does it belong to?

e UNION(x,y): replace the set containingand the set containingby their union.

The pseudocode for Kruskal's algorithm follows:

Function Kruskal(grapis(V, E))
setX
X=1{}
E:=sortE by weight
forueV
MAKESET(u)
rof
for (u,v) € E (in increasing order) do
if FIND(u) # FIND(v) do
X =XU{(uv)}
UNION(u,v)
rof
returnx)
end Kruskal

The correctness of Kruskal’s algorithm follows from theldaling argument: Kruskal's algorithm adds an edge

einto X only if it connects two trees; l&d be the set of vertices in one of these two trees. Tdgrust be the first

Lecture 5 5-5

edge in the sorted edge list that has one endpoitand the other endpoint M — S, and is therefore the lightest

edge that crosses betweBandV — S. Thus the cut property of MST implies the correctness of tgerihm.

The running time of the algorithm, assuming the edges arengin sorted order, is dominated by the set
operations: UNION and FIND. There ane- 1 UNION operations (one corresponding to each edge in thenépag
tree), and gn FIND operations (2 for each edge). Thus the total time of Kalis algorithm isO(mx FIND + n x
UNION). We will soon show that this i©®(mlog*n). Note that, if the edges aret initially given in sorted order,
then to sort them in the obvious way takegmlogm) time, and this would be the dominant part of the running time

of the algorithm.

Exchange Property

Actually spanning trees satisfy an even stronger propédy the cut property — the exchange property. The
exchange property is quite remarkable since it implies Weatan “walk” from any spanning treE to a minimum
spanning tred by a sequence of exchange moves — each such move consistsvafithan edge out of the current
tree that is not inf, and adding a new edge into the current tree that i.ilMoreover, each successive tree in the

“walk” is guaranteed to weigh no more than its predecessor.

Exchange property: Let T andT’ be spanning trees i6(V,E). Given anye € T’ — T, there exists an edge
ec T —T such thal(T — {e}) U{€} is also a spanning tree.

The proof is quite similar to that of the cut property. Addigdnto T results in a unique cycle. There must be
some edge in this cycle that is not T (since otherwis&’ must have a cycle). Call this edge Then deletinge

restores a spanning tree, since connectivity is not affeeted the number of edges is restoredito 1.

To see how one may use this exchange property to “walk” frognspanning tree to a MST: I€i be any
spanning tree and léf be a MST iNnG(V,E). Let € be the lightest edge that is not in both trees. Perform an
exchange using this edge. Since the exchange was done wiightest such edge, the new tree must be lighter than
the old one. Sinc@ is already a MST, it follows that the exchange must have begiogmed uporT and results in
a lighter spanning tree which has more edges in commonTi{ihthere are several edges of the same weight, then

the new tree might not be lighter, but it still has more edgesommon withT).

Lecture 5 5-6

O)
3
&

AV

o 01 A

4 1

o
& \\%

~ N
C—6—™0

2
C
3 6

c0—© O ®) o—© O ¢—© O
©c O O I_i ®) ¢ O O ¢ O O
©c O O o O O & O O &—© O
o—© O ¢—© O —>o ¢—oO

¢—© O ¢———0° ¢—=o© I ¢—=© I
&—© O &—© O &—=© O G—66—>0

c0—© O G—o© O c0—© O G—o I
©c O O o 66— I c—=o I
©c O O o O O o O o O

¢—=0 I c—>0 I ¢—=>0 I ¢—=—0 I
)) q d

& O O &—© O

O
O

O
@
)
O

Figure 5.1: An example of Prim’s algorithm and Kruskal’'sa@ithm. Which is which?

