CS124 Lecture 4 Spring 2011

Breadth-First Search

A searching technique with different properties than DF8rigadth-First Search (BFS). While DFS used an
implicit stack, BFS uses an explicit queue structure in mheiteing the order in which vertices are searched. Also,
generally one does not restart BFS, because BFS only makss gethe context of exploring the part of the graph

that is reachable from a particular vertexr{ the algorithm below).

Procedure BFSG(V,E),se€ V)
graphG(V,E)
array[|V [] of integers dist
queue q;
dist[s] :=0
inject(q, s)
placed§) =1
while sizgq) > 0
v := pop(0)
previsit()
for (vw) € E
if placed(v) = 0 then
inject(q,w)
placed) := 1
dist(w) = dist{v)+1
fi
rof
end while
end BFS

Although BFS does not have the same subtle properties of DES8es provide useful information. BFS visits
vertices in order of increasing distance franin fact, our BFS algorithm above labels each vertex withdilsance
from s, or the number of edges in the shortest path freio the vertex. For example, applied to the graph in

Figure 4.1, this algorithm labels the vertices (by the adiy) as shown.

Why are we sure that the array dist is the shortest-pathraistioms? A simple induction proof suffices. It
is certainly true if the distance is zero (this happens ohls).aAnd, if it is true for disfv) = d, then it can be easily

shown to be true for values of dist equalde- 1 —any vertex that receives this value has an edge from axweith

4-1

4-2

distd, and from no vertex with lower value of dist. Notice that et not reachable fromwill not be visited or

labeled.

2 3

Figure 4.1: BFS of a directed graph

BFS runs, of course, in linear tim@(|E|), under the assumption thg| > |V|. The reason is that BFS visits

each edge exactly once, and does a constant amount of woekiger

Single-Source Shortest Paths —Nonnegative Lengths

What if each edgév,w) of our graph has &ngth, a positive integer denoted lengtw), and we wish to find
the shortest paths fromto all vertices reachable from #2BFS offers a possible solution. We can subdivide each
edge(u,v) into lengthi{u,v) edges, by inserting length, v) — 1 “dummy” nodes, and then apply DFS to the new
graph. This algorithm solves the shortest-path probleninie O(y (e length(u,v)). Unfortunately, this can be

very large —lengths could be in the thousands or millionsw8meed to find a better way.

The problem is that this BFS-based algorithm will spend nufsts time visiting “dummy” vertices; only
occasionally will it do something truly interesting, likésit a vertex of the original graph. What we would like to

do is run this algorithm, but only do work for the “interegginsteps.

To do this, We need to generalize BFS. Instead of using a queaiavill instead use &eap or priority queue

of vertices. A heap is an data structure that keeps a set etishjwhere each object has an associated value. The

lwhat if we are interested only in the shortest path fisim a specific nodé? As it turns out, all algorithms known for this problem have
to compute the shortest path frato all vertices reachable from it.

4-3

operations a heald implements include the following:

deletemin() return the object with the smallest value
inserti,y,H) insert a new object/valuey pair in the structure
changex,y,H) if yis smaller tharx's current value,

change the value of objegto y

We will not distinguish between insert and change, sinceofar purposes, they are essentially equivalent;

changing the value of a vertex will be like re-inserting?it.

Each entry in the heap will stand for a projected future ‘fiesing event” of our extended BFS. Each entry will
correspond to a vertex, and its value will be the currentqmgid time at which we will reach the vertex. Another
way to think of this is to imagine that, each time we reach a mestex, we can send an explorer down each adjacent
edge, and this explorer moves at a rate of 1 unit distancegoensl. With our heap, we will keep track of when each
vertex is due to be reached for the first time by some expldtete that the projected time until we reach a vertex
can decrease, because the new explorers that arise wheastea@ewly explored vertex could reach a vertex first
(see node b in Figure 4.2). But one thing is certaime most imminent future scheduled arrival of an explorer must
happen, because there is no other explorer who can reach any vegt.fdhe heap conveniently delivers this most

imminent event to us.

As in all shortest path algorithms we shall see, we maintamarrays indexed by. The first array, digv],
will eventually contain the true distance wfrom s. The other array, prév], will contain the last node beforein
the shortest path fromto v. Our algorithm maintains a useful invariant properéy:all times dist[v] will contain a
conservative over-estimate of the true shortest distance of v froms. Of course digg is initialized to its true value O,
and all other dist’s are initialized t®, which is a remarkably conservative overestimate. Therdlgo is known as

Djikstra’s algorithm, named after the inventor.

Algorithm Djikstra G = (V, E,length); s€ V)
V,W: vertices
dist: arrayV] of integer
prev: arrayV] of vertices
H: priority heap ofV
H:={s:0}
forveV do
distv] := oo, pre\jv] :=nil

2|n all heap implementations we assume that we have an arrpyinfers that gives, for each vertex, its position in thephegany.
This allows us to always have at most one copy of each verteheimeap. Furthermore, it makes changes and inserts edbeatjuivalent
operations.

4-4

Figure 4.2: Shortest paths

rof
disfg :=0
whileH # 0
v := deletemirgh)
for (vw) € E
if distjw] > distiv]+ length(v, w)
disfw] := dist]v] + length(v,w), prevjw| := v, insertgv,disfw]|, H)
fi
rof

end while end shortest paths 1

The algorithm, run on the graph in Figure 4.2, will yield tledlédwing heap contents (node: dist/priority pairs)
at the beginning of the while loods: 0}, {a:2,b: 6}, {b:5,c:3},{b:4,e:7,f:5},{e:7,f:5d:6}, {e:6,d:6},
{e: 6}, {}. The distances frora are shown in Figure 2, together with thigortest path tree from s, the rooted tree

defined by the pointers prev.

What is the running time of this algorithm? The algorithmalwes |E| insert operations any/| deletemin
operations orH, and so the running time depends on the implementation dii¢apH. There are many ways to
implement a heap. Even an unsophisticated implementasianiaked list of node/priority pairs yields an interesting

time bound,O(|V|?) (see first line of the table below). A binary heap would gB@E|log|V|).

Which of the two should we prefer? The answer depends ondeoge or sparse our graphs are. In all graphs,

|E| is betweerlV| and|V|?. Ifitis Q(|V|?), then we should use the linked list version. If it is anymeeéng\g/—l‘\Z/l,

we should use binary heaps.

4-5

heap implementation deletemin | insert |V|xdeletemin-|E|xinsert
linked list o(|V]) 0(1) O(|V[?)

binary heap O(log|V]) | O(log|V|) O(|E|log|V|)

d-ary heap o(42) | ok O((IV[-d+ |E]) 52
Fibonacci heap O(log|V|) | O(1) amortized| O(|V|log|V|+ |E|)

A more sophisticated data structure, thary heap, performs even better. dAary heap is just like a binary

heap, except that the fan-out of the tred isnstead of 2. (Herd should be at least 2, however!) Since the depth of

any such tree wittV| nodes IS%, it is easy to see that inserts take this amount of time. BPelits taked times

that, because deletemins go down the tree, and must look ahtliren of all vertices visited.

The complexity of this algorithm is a function of We must chooseé to minimize it. A natural choice is
d= M which is the the average degree! (Note that this is the abtiice because it equalizes the two terms of
|[E| 4+ |V|-d. Alternatively, the “exact” value can be found using calsu) This yields an algorithm that is good for
both sparse and dense graphs. For dense graphs, its ruimiagstO(|V |2). For graphs withE| = O(|V|), it is
IV|log|V|. Finally, for graphs with intermediate density, suchBs= [V|*9, whered is thedensity of the graph,

the algorithm idinear!

The fastest known implementation of Djikstra’s algorithises a data structure known as a Fibonacci heap,
which we will not cover here. Note that the bounds for the inse@eration for Fibonacci heaps are amortized

bounds: certain operations may be expensive, but the avexs) over a sequence of operations is constant.

Single-Source Shortest Paths: General Lengths

Our argument of correctness of our shortest path algorittas based on the “time metaphor:” the most im-
minent prospective event (arrival of an explorer) must tpkace, exactly because it is the most imminent. This
however would not work if we hadegative edges. (Imagine explorers being able to arrive before they leftthe
length of edgga,b) in Figure 2 were—1, the shortest path fromto b would have value 1, not 4, and our simple
algorithm fails. Obviously, with negative lengths we needreninvolved algorithms, which repeatedly update the

values of dist.

We can describe a general paradigm for constructing shgrédls algorithms with arbitrary edge weights. The
algorithms use arrays dist and prev, and again we maintaiim#ariant that dist is always a conservative overestimate

of the true distance fromm (Again, dist is initialized tao for all nodes, except fas for which it is 0).

4-6

The algorithms maintain dist so that it is always a consematverestimate; it will only update the a value
when a suitable path is discovered to show that the overatgioan be lowered. That is, suppose we find a neighbor
w of v, with disfv] > distw] + length{w,v). Then we have found an actual path that shows the distanceagstis

too conservative. We therefore repeatedly apply the falgwpdate rule.

procedure updaté(w,V))
edge(w,V)
if dist[v] > distiw]+ length(w, v) then
distv] := distw] + length(w, V), preVv] :=w

A crucial observation is that this proceduresafe, in that it never invalidates our “invariant” that dist is a

conservative overestimate.

The key idea is to consider how these updates along edgeklsbmmur. In Djikstra’s algorithm, the edges are

updated according to the time order of the imaginary expdorBut this only works with positive edge lengths.

A second crucial observation concerns how many updates wethalo. Leta # sbe a node, and consider the
shortest path fromsto a, says,vi, Vo, ..., = afor somek between 1 and— 1. If we perform update first ofs,v;),
later on(vy,Vv2), and so on, and finally ofw_1,a), then we are sure that dis) contains the true distance from
to a, and that the true shortest path is encoded in prExelcise: Prove this, by induction.) We must thus find a
sequence of updates that guarantee that these edges ateduipdhis order. We don't care if these or other edges
are updated several times in between, since all we need @/®dsequence of updates that contains this particular

subsequence. There is a very easy way to guarantee thigewgdtadgesV | — 1 times in a row!

Algorithm Shortest Paths Z3(= (V,E,length); se V)
V,W: vertices
dist: arrayV] of integer
prev: arrayV] of vertices

i: integer
forveV do

dist]v] := oo, preVjv] :=nil
rof
disfg :=0
fori=1...n—1

for (w,v) € E updatéw, V)
end shortest paths 2

This algorithm solves the general single-source shorigtbt problem inO(|V| - |[E|) time.

4-7

Negative Cycles

In fact, there is a further problem that negative edges casecaSuppose the length of eddea) in Figure 2
were changed te-5. The the graph would havenagative cycle (from a to b and back). On such graphs, it does not
make sense to eveask the shortest path question. What is the shortest path e in the modified graph? The
one that goes directly fromto ato ¢ (cost: 3), or the one that goes frato ato bto ato c (cost: 1), or the one that

takes the cycle twice (cost: -1)? And so on.

The shortest path problem is ill-posed in graphs with negative cycles. It makes no sense and deserves no
answer. Our algorithm in the previous section works onlyhi@ &bsence of negative cycles. (Where did we assume
no negative cycles in our correctness argument? AnswernWlgeasserted that a shortest path freto a exists!)

But it would be useful if our algorithm were able detect whether there is a negative cycle in the graph, and thus to

report reliably on the meaningfulness of the shortest patiwars it provides.

This is easily done. After the/| — 1 rounds of updates of all edges, do a last update. If any @saogcur
during this last round of updates, there is a negative cy€kis must be true, because if there were no negative

cycles,|V| — 1 rounds of updates would have been sufficient to find the estopaths.

Shortest Paths on DAG's

There are two subclasses of weighted graphs that autorhateeclude the possibility of negative cycles:
graphs with non-negative weights and DAG’s. We have alressaiyn that there is a fast algorithm when the weights

are non-negative. Here we will givelimear algorithm for single-source shortest paths in DAG’s.

Our algorithm is based on the same principle as our algorfilmmegative weights. We are trying to find a
sequence of updates, such that all shortest paths are gsquances. But in a DAG we know that all shortest paths
from smust go in the topological order of the DAG. All we have to derthis first topologically sort the DAG using
a DFS, and then visit all edges coming out of nodes in the tmpodl order. This algorithm solves the general

single-source shortest path problem for DAG’SO(m) time.

