CS124 Lecture 20

Heuristics can be useful in practice, but sometimes we wididdo have guarantees. Approximation algorithms
give guarantees. It is worth keeping in mind that sometinpgsaximation algorithms do not always perform as well
as heuristic-based algorithms. Other times they providgit into the problem, so they can help determine good

heuristics.

Often when we talk about an approximation algorithm, we gim@pproximation ratio The approximation
ratio gives the ratio between our solution and the actualt®si. The goal is to obtain an approximation ratio as
close to 1 as possible. If the problem involves a minimizagtibhe approximation ratio will be greater than 1; if it

involves a maximization, the approximation ratio will begehan 1.

Vertex Cover Approximations

In the Vertex Cover problem, we wish to find a set of verticesnafimal size such that every edge is adjacent
to some vertex in the cover. That is, given an undirectedlg@p- (V,E), we wish to findJ C V such that every

edgee € E has an endpoint it. We have seen that Vertex CoveN®-complete.

A natural greedy algorithm for Vertex Cover is to repeatettpose a vertex with the highest degree, and put it
into the cover. When we put the vertex in the cover, we rembeevertex and all its adjacent edges from the graph,
and continue. Unfortunately, in this case the greedy algarigives us a rather poor aprroximation, as can be seen

with the following example:

O vertices chosen
by greedy

‘ vertices in the
.4 min cover

Figure 20.1: A bad greedy example.
In the example, all edges are connected to the base leved; dinem/2 vertices at the next leval/3 vertices

20-1

Lecture 20 20-2

at the next level, and so on. Each vertex at the base levelhisected to one vertex at each other level, and the
connections are spread as evenly as possible at each levgleefly algorithm could always choose a rightmost
vertex, whereas the optimal cover consists of the leftmedices. This example shows that, in general, the greedy

approach could be off by a factor &f(logn), wheren is the number of vertices.

A better algorithm for vertex cover is the following: repedly choose an edge, and thrbwth of its endpoints

into the cover. Throw the vertices and its adjacent edgesfahe graph, and continue.

It is easy to show that this second algorithm uses at mosetagcmany vertices as the optimal vertex cover.
This is because each edge that gets chosen during the cduiseadgorithm must have one of its endpoints in the

cover; hence we have merely always thrown two vertices inrevlae might have gotten away with throwing in 1.

Somewhat surprisingly, this simple algorithm is still thesb known approximation algorithm for the vertex

cover problem. That is, no algorithm has been proven to debttan within a factor of 2.

Maximum Cut Approximation

We will provide both a randomized and a deterministic apjpnation algorithm for the MAX CUT problem.
The MAX CUT problem is to divide the vertices in a graph intootdisjoint sets so that the numbers of edges
between vertices in different sets is maximized. This poblsNP-hard. Notice that the MIN CUT problem can

be solved in polynomial time by repeated using the min cut-ftav algorithm. (Exercise: Prove this!)

The randomized version of the algorithm is as follows: wed#vhe vertices into two sets, HEADS and TAILS.

We decide where each vertex goes by flipping a (fair) coin.

What is the probability an edge crosses between the setg @tf? This will happen only if its two endpoints
lie on different sides, which happens 1/2 of the time. (Ttaee4 possibilities for the two endpoints — HH,HT, TT,TH
—and two of these put the vertices on different sides.) S@venage, we expect 1/2 the edges in the graph to cross
the cut. Since the most we could have is for all the edges &sdiee cut, this random assignment will, on average,

be within a factor of 2 of optimal.

We now examine a deterministic algorithm with the same “agipnation ratio”. (In fact, the two algorithms
are intrinsically related— but this is not so easy to see!® @lgorithm implements the hill climbing approximation
heuristic. We will split the vertices into se8 andS,. Start with all vertices on one side of the cut. Now, if you can
switch a vertex to a different side so that it increases thmbar of edges across the cut, do so. Repeat this action

until the cut can no longer be improved by this simple switch.

Lecture 20 20-3

We switch vertices at mo$E | times (since each time, the number of edges across the ceases). Moreover,
when the process finishes we are within a factor of 2 of thamgdtias we shall now show. In fact, when the process

finishes, at leagE|/2 edges lie in the cut.

We can count the edges in the cut in the following way: consiohy vertexv € S;. For every vertexw in
that it is connected to by an edge, we ad@ 1o a running sum. We do the same for each verte%inNote that

each edge crossing the cut contributes 1 to the sum— 1/2 ¢bneatex of the edge.

Hence the cu satisfies

1

C
2

({w:(vw) cEwe S|+ 5 [{w:(ww) eEwe Sﬂl) :

ve
Since we are using the local search algorithm, at least haletiges from any vertaxmust lie in the set opposite
from v; otherwise, we could switch what side verteis on, and improve the cut! Hence, if vertekas degreé(v),

then

c = %({w: (vw) € E,we S} +
Ve

(%2

1

~ Iy
a2
1

Hw: (vw) e E;we Sl}]>

ve

where the last equality follows from the fact that if we sura tlegree of all vertices, we obtain twice the number of

edges, since we have counted each edge twice.

In practice, we might expect that hill climbing algorithm wd do better than just getting a cut within a factor

of 2.

Euclidean Travelling Salesper son Problem

In the Euclidean Travelling Salesman Problem, we are givpoints (cities) in thex—y plane, and we seek
the tour (cycle) of minimum length that travels through h# tities. This problem is NP-complete (showing this is

somewhat difficult).

Our approximation algorithm involves the following steps:

1. Find a minimum spanning tréefor the points.

Lecture 20 20-4

2. Create gseudo touby walking around the tree. The pseudo tour may visit somicesr twice.

3. Remove repeats from the tour blgort-cuttingthrough the repeated vertices. (See Figure 20.2.)

Minimum spanning tree

/\/'\-v Constructed pseudo tour

______ Constructed tour

Figure 20.2: Building an approximate tour. Starigtmove in the direction shown, short-cutting repeated vesti

We now show the following inequalities:

length of tour < length of pseudo tour

A

2(size of T)

< 2(length of optimal tour)

Short-cutting edges can only decrease the length of the $ouhe tour given by the algorithm is at most the
length of the pseudo tour. The length of our pseudo tour is@dtrwice the size of the spanning tree, since this
pseudo tour consists of walking through each edge of theatre®ost twice. Finally, the length of the optimal tour

is at least the size of the minimum spanning tree, since amyctantains a spanning tree (plus an edge!).

Using a similar idea, one can come up with an approximatigarihm that returns a tour that is within a factor

of 3/2 of the optimal. Also, note that this algorithm will work imy setting where short-cutting is effective. More

Lecture 20 20-5

specifically, it will work for any instance of the travellirgpalesperson problem that satisfies titi@ngle inequality
for distances: that is, ifi(x,y) represents the distance between verticaady, andd(x,z) < d(x,y) + d(y,z) for all

X,y andz

MAX-SAT: Applying Randomness

Consider the MAX-SAT problem. What happens if we do the seapkandom thing we can think of-— we
decide whether each variable should be TRUE or FALSE by ftigjai coin.

Theorem 20.1 On average, at least half the clauses will be satisfied if wef]ip a coin to decide the value of each

variable. Moreover, if each clause has k literals, then oaragel — 2~k clauses will be satisfied.

The proof is simple. Look at each clause. If it hdgerals in it, then each literal could make the clause TRUE
with probability 1/2. So the probability the clause is naisfied is 1— 2%, wherek is the number of literals in the

clause.

Linear Programming Relaxation

The next approach we describe, linear programming relaxaitan often be used as a good heuristic, and
in some cases it leads to approximation algorithms with gioter guarantees. Again, we will use the MAX-SAT

problem as an example of how to use this technique.

The idea is simple. ModWP-complete problems can be easily described by a naturagénteérogramming
problem. (Of course, alP-complete problems can be transformed into some Integeyr&@mming problem, since
Integer Programming iBlP-complete; but what we mean here is in many cases the tramafion is quite natural.)
Even though we cannot solve the related Integer Progifang pretend it is a linear progranthen we can solve it,
using (for example) the simplex method. This idea is knowrefs<ation since we are relaxing the constraints on

the solution; we are no longer requiring that we get a salutitnere the variables take on integer values.

If we are extremely lucky, we might find a solution of the lin@aogram where all the variables are integers,
in which case we will have solved our original problem. Uggale will not. In this case we will have to try to
somehow take the linear programming solution, and modifytd a solution where all the variables take on integer

values.Randomized Roudirig one technique for doing this.

MAX-SAT

Lecture 20 20-6

We may formulate MAX-SAT as an integer programming problenaistraightforward way (in fact, we have
seen a similar reduction before, back when we examined itasg it is repeated here). Suppose the formula
contains variableg, X, . .. , X, Which must be set to TRUE or FALSE, and clau€gesC,,...,Cy. For each variable
X; we associate a variablg which should be 1 if the variable is TRUE, and 0 if it is FALSErfeach claus€; we

have a variablg; which should be 1 if the clause is satisfied and 0 otherwise.

We wish to maximize the number of satisfied clausex
m
Z Zj.
=1

The constraints include that thatQy;, z; < 1; since this is an integer program, this forces all thesabbes
to be either O or 1. Finally, we need a constraint for eachselaaying that its associated variaplean be 1 if and

only if the clause is actually satisfied. If the cla@es (x2 Xz V X6V Xg), for example, then we need the restriction:

Yo+ VYe+ (1—ya)+ (1—yg) > z;.

This forcesz; to be 0 unless the clause can be satisfied. In general, weesplay yi, X by 1—y;, V by +, and set

the whole thing> z; to get the appropriate constraint.

When we solve the linear program, we will get a solution thaghnhhavey, = 0.7 andz = 0.6, for instance.
This initially appears to make no sense, since a variablaatdre 07 TRUE. But we can still use these values in a
reasonable way. i§; = 0.7, it suggests that we would prefer to set the variahleo TRUE (1). In fact, we could
try just rounding each variable up or down to 0 or 1, and usédbkaa solution! This would be one way to turn
the non-integer solution into an integer solution. Unfodtely, there are problems with this method. For example,
suppose we have the claBe= (x; VX2V x3), andy; =y, = y3 = 0.4. Then by simple rounding, this clause will not
be TRUE, even though it “seems satisfied” to our linear pnogftat is,z; = 1). If we have a lot of these clauses,

regular rounding might perform very poorly.

It turns out that there an interpretation fa7Qhat suggests a better way than simple rounding. We thirikeof
0.7 asa probability. That is, we interprey; = 0.7 as meaning that; would like to be true with probability @.
So we take each variable, and independently we set it to 1 with the probability givenyb(and with probability
1-vy; we setx; to 0). This process is known aandomized roundingOne reason randomized rounding is useful is
it allows usto provethat the expected number of clauses we satisfy using thigdiog is a within a constant factor

of the true optimum.

First, note that whatever the maximum number of clause® can satisfy is, the value found by the linear

Lecture 20 20-7

program, orz’j“:lzj, is at least as big as This is because the linear program could achieve a valu¢ lebats

simply by using as the values fgrthe truth assignment that make satisfysxtjauses possible.

Now consider a clause with variables; for convenience, suppose the clause isQust (X1 V X2...V X).
Suppose that when we solve the linear program, wedind . Then we claim that the probability that this clause
is satisfied after the rounding is at le&&t— 1/e). This can be checked (using a bit of sophisticated math)it but
follows by noting (with experiments) that the worst podiitpiis thaty; =vy,... = yx = B/k. In this case, eacky
is FALSE with probability(1 — /k), and soC; ends up being unsatisfied with probability— 3/k). Hence the
probability it is satisfied is at least (again using some math (1—B/k)* > (1—1/e)B.

Hence théth clause is satisfied with probability at leat- 1/e)z, so the expected number of satisfied clauses
after randomized rounding is at leddt-1/e) 3| ; ;. This is within a factor of1—1/e) of our upper bound on the

maximum number of satisfiable clausgg;. , z;. Hence we expected to get within a constant factor of the maxi.

Combining the Two

Surprisingly, by combining the simple coin flipping algbrit with the randomized rounding algorithm, we can
get an even better algorithm. The idea is that the coin fligpiigorithm does best on long clauses, since each literal
in the clause makes it more likely the clause gets set to TRUEthe other hand, randomized rounding does best
on short clauses; the probability the clause is satisfied ((L— B/k)¥) decreases witk. It turns out that if we try

both algorithms, and take the better result, on average Weatisfy 3/4 of the clauses.

We also point out that there are even more sophisticatecbgippation algorithms for MAX-SAT, with better

approximation ratios. However, these algorithms pointsmme very interesting and useful general techniques.

