
CS 124 Lecture 2

In order to discuss algorithms effectively, we need to startwith a basic set of tools. Here, we explain these tools

and provide a few examples. Rather than spend time honing ouruse of these tools, we will learn how to use them by

applying them in our studies of actual algorithms.

Induction

The standard form of the induction principle is the following:

If a statement P(n) holds for n= 1, and if for every n≥ 1 P(n) implies P(n+1), then P holds for all n.

Let us see an example of this:

Claim 2.1 Let S(n) = ∑n
i=1 i. Then S(n) = n(n+1)

2 .

Proof: The proof is by induction.

Base Case:We show the statement is true forn = 1. AsS(1) = 1 = 1(2)
2 , the statement holds.

Induction Hypothesis: We assumeS(n) = n(n+1)
2 .

Reduction Step:We showS(n+1) = (n+1)(n+2)
2 . Note thatS(n+1) = S(n)+n+1. Hence

S(n+1) = S(n)+n+1

=
n(n+1)

2
+n+1

= (n+1)
(n

2
+1

)

=
(n+1)(n+2)

2
.

The proof style is somewhat pedantic, but instructional andeasy to read. We break things down to the base case

– showing that the statement holds whenn = 1; the induction hypothesis – the statement thatP(n) is true; and the

reduction step – showing thatP(n) impliesP(n+1).

Induction is one of the most fundamental proof techniques. The idea behind induction is simple: take a large

problem (P(n+ 1)), and somehowreduceits proof to a proof of a smaller problems (such asP(n); P(n) is smaller

2-1

2-2

in the sense thatn < n+1). If every problem can thereby be broken down to a small number of instances (we keep

reducing down toP(1)), these can be checked easily. We will see this idea ofreduction, whereby we reduce solving

a problem to a solving an easier problem, over and over again throughout the course.

As one might imagine, there are other forms of induction besides the specific standard form we gave above.

Here’s a different form of induction, calledstrong induction:

If a statement P(n) holds for n= 1, and if for every n≥ 1 the truth of P(i) for all i ≤ n implies P(n+1), then P holds

for all n.

Exercise: show that every number has a unique prime factorization using strong induction.

O Notation

When measuring, for example, the number of steps an algorithm takes in the worst case, our result will generally

be some functionT(n) of the input size,n. One might imagine that this function may have some complex form, such

asT(n) = 4n2−3nlogn+ n2/3 + log3n−4. In very rare cases, one might wish to have such an exact formfor the

running time, but in general, we are more interested in the rate of growth ofT(n) rather than its exact form.

TheO notation was developed with this in mind. With theO notation, only the fastest growing term is important,

and constant factors may be ignored. More formally:

Definition 2.2 We say for non-negative functions f(n) and g(n) that f(n) is O(g(n)) if there exist positive constants

c and N such that for all n≥ N,

f (n) ≤ cg(n).

Let us try some examples. We claim that 2n3 +4n2 is O(n3). It suffices to show that 2n3 +4n2 ≤ 6n3 for n≥ 1,

by definition. But this is clearly true as 4n3 ≥ 4n2 for n≥ 1. (Exercise: show that 2n3 +4n2 is O(n4).)

We claim 10log2n is O(lnn). This follows from the fact that 10log2 n≤ (10log2e) lnn.

If T(n) is as above, thenT(n) is O(n2). This is a bit harder to prove, because of all the extraneous terms. It is,

however, easy to see; 4n2 is clearly the fastest growing term, and we can remove the constant withO notation. Note,

though, thatT(n) is O(n3) as well! TheO notation is not tight, but more like a≤ comparison.

Similarly, there is notation for≥ and= comparisons.

Definition 2.3 We say for non-negative functions f(n) and g(n) that f(n) is is Ω(g(n)) if there exist positive con-

2-3

stants c and N such that for all n≥ N,

f (n) ≥ cg(n).

We say that f(n) is Θ(g(n)) if both f(n) is O(g(n)) and f(n) is Ω(g(n)).

TheO notation has several useful properties that are easy to prove.

Lemma 2.4 If f1(n) is O(g1(n)) and f2(n) is O(g2(n)) then f1(n)+ f2(n) is O(g1(n)+g2(n)).

Proof: There exist positive constantsc1,c2,N1, andN2 such thatf1(n) ≤ c1g1(n) for n≥ N1 and f2(n) ≤ c2g2(n) for

n≥ N2. Hencef1(n)+ f2(n) ≤ max{c1,c2}(g1(n)+g2(n)) for n≥ max{N1,N2}.

Exercise: Prove similar lemmata forf1(n) f2(n). Prove the lemmata whenO is replaced byΩ or Θ.

Finally, there is a bit for notation corresponding to<<, when one function is (in some sense) much less than

another.

Definition 2.5 We say for non-negative functions f(n) and g(n) that f(n) is is o(g(n)) if

lim
n→∞

f (n)

g(n)
= 0.

Also, f(n) is ω(g(n)) if g(n) is o(f (n)).

We emphasize that theO notation is a tool to help us analyze algorithms. It does not always accurately tell us

how fast an algorithm will run in practice. For example, constant factors make a huge difference in practice (imagine

increasing your bank account by a factor of 10), and they are ignored in theO notation. Like any other tool, theO

notation is only useful if used properly and wisely. Use it asa guide, not as the last word, to judging an algorithm.

Recurrence Relations

A recurrence relation defines a function using an expressionthat includes the function itself. For example, the

Fibonacci numbers are defined by:

F(n) = F(n−1)+F(n−2), F(1) = F(2) = 1.

This function is well-defined, since we can compute a unique value ofF(n) for every positive integern.

Note that recurrence relations are similar in spirit to the idea of induction. The relations defines a function value

F(n) in terms of the function values at smaller arguments (in thiscase,n− 1 andn− 2), effectively reducing the

2-4

problem of computingF(n) to that of computingF at smaller values. Base cases (the values ofF(1) andF(2)) need

to be provided.

Finding exact solutions for recurrence relations is not an extremely difficult process; however, we will not

focus on solution methods for them here. Often a natural thing to do is to try to guess a solution, and then prove it

by induction. Alternatively, one can use a symbolic computation program (such as Maple or Mathematica); these

programs can often generate solutions.

We will occasionally use recurrence relations to describe the running times of algorithms. For our purposes, we

often do not need to have an exact solution for the running time, but merely an idea of its asymptotic rate of growth.

For example, the relation

T(n) = 2T(n/2)+2n, T(1) = 1

has the exact solution (forn a power of 2) ofT(n) = 2nlog2n+n. (Exercise: Prove this by induction.) But for our

purposes, it is generally enough to know that the solution isΘ(nlogn).

The following theorem is extremely useful for such recurrence relations:

Theorem 2.6 The solution to the recurrence relation T(n) = aT(n/b)+ cnk, where a≥ 1 and b≥ 2 are integers

and c and k are positive constants satisfies:

T(n) is



















O
(

nlogb a
)

if a > bk

O
(

nk logn
)

if a = bk

O
(

nk
)

if a < bk.

Data Structures

We shall regard integers, real numbers, and bits, as well as more complicated objects such as lists and sets, as

primitive data structures. Recall that a list is just an ordered sequence of arbitrary elements.

List q := [x1,x2, . . . ,xn].

x1 is called the head of the list.

xn is called the tail of the list.

n = |q| is the size of the list.

2-5

We denote by◦ the concatenation operation. Thusq◦ r is the list that results from concatenating the listq with

the listr.

The operations on lists that are especially important for our purposes are:

head(q) return(x1)

push(q,x) q := [x]◦q

pop(q) q := [x2, . . . ,xn], return(x1)

inject(q,x) q := q◦ [x]

eject(q) q := [x1,x2, . . . ,xn−1], return(xn)

size(q) return(n)

The head, pop, and eject operations are not defined for empty lists. Appropriate return values (either an error,

or an empty symbol) can be designed depending on the implementation.

A stackis a list that supports operations head, push, pop.

A queueis a list that supports operations head, inject and pop.

A dequesupports all these operations.

Note that we can implement lists either by arrays or using pointers as the usual linked lists. Arrays are often

faster in practice, but they are often more complicated to program (especially if there is no implicit limit on the

number of items). In either case, each of the above operations can be implemented in a constant number of steps.

Application: Mergesort

For the rest of the lecture, we will review the procedure mergesort. The input is a list ofn numbers, and the

output is a list of the given numbers sorted in increasing order. The main data structure used by the algorithm will be

a queue. We will assume that each queue operation takes 1 step, and that each comparison (isx > y?) takes 1 step.

We will show that mergesort takesO(nlogn) steps to sort a sequence ofn numbers.

The procedure mergesort relies on a function merge which takes as input twosorted(in increasing order) lists

of numbers and outputs a single sorted list containing all the given numbers (with repetition).

function merge(s, t)
list s, t
if s= [] then returnt

2-6

else ift = [] then returns
else ifs(1) ≤ t(1) thenu:= pop(s)

elseu:= pop(t)
return push(u, merge(s, t))

end merge

function mergesort (s)
list s, q
q = []
for x∈ s

inject(q, [x])
rof
while size(q) ≥ 2

u := pop(q)
v := pop(q)
inject(q, merge(u,v))

end
if q = [] return[]

else returnq(1)
end mergesort

The correctness of the function merge follows from the following fact: the smallest number in the input is either

s(1) or t(1), and must be the first number in the output list. The rest of theoutput list is just the list obtained by

mergingsandt after deleting that smallest number.

The number of steps for each invocation of function merge isO(1) steps. Since each recursive invocation of

merge removes an element from eithersor t, it follows that function merge halts inO(|s|+ |t|) steps.

Question: Can you design an iterative (rather than recursive) versionof merge? How much time does is take?

Which version would be faster in practice– the recursive or the iterative?

The iterative algorithm mergesort usesq as a queue of lists. (Note that it is perfectly acceptable to have lists of

lists!) It repeatedly merges together the two lists at the front of the queue, and puts the resulting list at the tail of the

queue.

The correctness of the algorithm follows easily from the fact that we start with sorted lists (of length 1 each),

and merge them in pairs to get longer and longer sorted lists,until only one list remains. To analyze the running

time of this algorithm, let us place a special marker∗ initially at the end of theq. Whenever the marker∗ reaches the

front of q, and is either the first or the second element ofq, we move it back to the end ofq. Thus the presence of the

marker∗ makes no difference to the actual execution of the algorithm. Its only purpose is to partition the execution

2-7

Q : [[7,9], [1,4], [6,16], [2,10]∗ [3,11,12,14], [5,8,13,15]]

Q : [[6,16], [2,10]∗ [3,11,12,14], [5,8,13,15], [1,4,7,9]]

Figure 2.1: One step of the mergesort algorithm.

of the algorithm into phases: where a phase is the time between two successive visits of the marker∗ to the end

of theq. Then we claim that the total time per phase isO(n). This is because each phase just consists of pairwise

merges of disjoint lists in the queue. Each such merge takes time proportional to the sum of the lengths of the lists,

and the sum of the lengths of all the lists inq is n. On the other hand, the number of lists is halved in each phase,

and therefore the number of phases is at most logn. Therefore the total running time of mergesort isO(nlogn).

An alternative analysis of mergesort depends on a recursive, rather than iterative, description. Suppose we have

an operation that takes a list and splits it into two equal-size parts. (We will assume our list size is a power of 2, so

that all sublists we ever obtain have even size or are of length 1.) Then a recursive version of mergesort would do

the following:

function mergesort (s)
list s, s1, s2

if size(s) = 1 then return(s)
split(s,s1,s2)
s1 = mergesort(s1)
s2 = mergesort(s2)
return(merge(s1,s2))

end mergesort

Here split splits the lists into two parts of equal lengths1 ands2. The correctness follows easily from induction.

Let T(n) be the number of comparisons mergesort performs on lists of length n. Then T(n) satisfies the

recurrence relationT(n) ≤ 2T(n/2) + n− 1. This follows from the fact that to sort lists of lengthn we sort two

sublists of lengthn/2 and then merge them using (at most)n− 1 comparisons. Using our general theorem on

solutions of recurrence relations, we find thatT(n) = O(nlogn).

Question: The iterative version of mergesort uses a queue. Implicitly, the recursive version is using a stack. Explain

the implicit stack in the recursive version of mergesort.

Question: Solve the recurrence relationT(n) = 2T(n/2)+n−1 exactly to obtain an upper bound on the number of

comparisons performed by the recursive mergesort variation.

