CS 124 Lecture 2

In order to discuss algorithms effectively, we need to statth a basic set of tools. Here, we explain these tools
and provide a few examples. Rather than spend time honingssuof these tools, we will learn how to use them by

applying them in our studies of actual algorithms.

Induction
The standard form of the induction principle is the follogin
If a statement fn) holds for n= 1, and if for every n> 1 P(n) implies Rn+ 1), then P holds for all n.

Let us see an example of this:

Claim 2.1 Let §n) =3 ;i. Then $n) = ”(n;l).

Proof: The proof is by induction.

Base CaseWe show the statement is true for=1. AsS(1) =1= Lzz) the statement holds.

_ n(n+1)

Induction Hypothesis: We assumé&(n) >

Reduction Step:We showS(n+ 1) = w Note thatS(n+ 1) = S(n) + n+ 1. Hence

Sn+1) = Shn)+n+1

1
= M

1) g+1>

The proof style is somewhat pedantic, but instructional eal/ to read. We break things down to the base case
— showing that the statement holds whes 1; the induction hypothesis — the statement f@t) is true; and the

reduction step — showing thB{(n) impliesP(n+ 1).

Induction is one of the most fundamental proof techniqud®e ilea behind induction is simple: take a large

problem @(n+ 1)), and somehoweduceits proof to a proof of a smaller problems (suchR{®); P(n) is smaller

2-1

2-2

in the sense that < n+ 1). If every problem can thereby be broken down to a small remobinstances (we keep
reducing down td?(1)), these can be checked easily. We will see this ideadiiction whereby we reduce solving

a problem to a solving an easier problem, over and over abadghout the course.

As one might imagine, there are other forms of induction desithe specific standard form we gave above.

Here’s a different form of induction, callestrong induction

If a statement P) holds for n=1, and if for every n> 1 the truth of Ri) for alli < nimplies Rn+ 1), then P holds

for all n.

Exercise: show that every number has a unique prime factorizationgustirong induction.

O Notation

When measuring, for example, the number of steps an algotikes in the worst case, our result will generally
be some functiof (n) of the input sizen. One might imagine that this function may have some commexfsuch
asT(n) = 4n? — 3nlogn+ n%3 +log>n— 4. In very rare cases, one might wish to have such an exactffarthe

running time, but in general, we are more interested in ttesfgrowth ofT (n) rather than its exact form.

TheO notation was developed with this in mind. With tBanotation, only the fastest growing term is important,

and constant factors may be ignored. More formally:

Definition 2.2 We say for non-negative functiongnj and gn) that f(n) is O(g(n)) if there exist positive constants

c and N such that for all &> N,
f(n) <cg(n).

Let us try some examples. We claim thaf 2- 4n? is O(n®). It suffices to show thatr 4 4n? < 6n® for n > 1,
by definition. But this is clearly true as > 4n? for n > 1. (Exercise: show that 24 4n? is O(n*).)
We claim 10lognis O(Inn). This follows from the fact that 10lggh < (10log, e)Inn.

If T(n) is as above, theffi(n) is O(n?). This is a bit harder to prove, because of all the extranesusst. It is,
however, easy to seendis clearly the fastest growing term, and we can remove thetaohwithO notation. Note,

though, thafl (n) is O(n®) as well! TheO notation is not tight, but more like & comparison.

Similarly, there is notation for and= comparisons.

Definition 2.3 We say for non-negative functiongnj and gn) that f(n) is is Q(g(n)) if there exist positive con-

2-3

stants ¢ and N such that for allba N,
f(n) > cg(n).

We say that fn) is ©(g(n)) if both f(n) is O(g(n)) and f(n) is Q(g(n)).
TheO notation has several useful properties that are easy t@prov
Lemma 2.4 If f1(n) is O(gy(n)) and £(n) is O(gz(n)) then f(n) + f2(n) is O(g1(n) + g2(n)).
Proof: There exist positive constantg, ¢, N1, andN; such thatf; (n) < cigi(n) for n> Nj and f2(n) < czgz(n) for
n > Np. Hencefy(n) + fa(n) < max{cy,c2}(g1(n) + g2(n)) for n > max{ Ny, N, }. |

Exercise: Prove similar lemmata fof;(n) f(n). Prove the lemmata whed is replaced by or ©.

Finally, there is a bit for notation corresponding<ec, when one function is (in some sense) much less than

another.

Definition 2.5 We say for non-negative functiongnj and gn) that f(n) is is a(g(n)) if
lim m =0.
Also, f(n)isw(g(n)) if g(n) is o(f(n)).
We emphasize that th@ notation is a tool to help us analyze algorithms. It does ivsaygs accurately tell us
how fast an algorithm will run in practice. For example, dams factors make a huge difference in practice (imagine

increasing your bank account by a factor of 10), and theygmered in theO notation. Like any other tool, th®

notation is only useful if used properly and wisely. Use iaaguide, not as the last word, to judging an algorithm.

Recurrence Relations

A recurrence relation defines a function using an expregsianincludes the function itself. For example, the

Fibonacci numbers are defined by:
FinN=F(n—1)+F(n-2), F(1) =F(2) =1.
This function is well-defined, since we can compute a unicalaesofF (n) for every positive integen.

Note that recurrence relations are similar in spirit to thesdi of induction. The relations defines a function value

F(n) in terms of the function values at smaller arguments (in tiaise,n — 1 andn — 2), effectively reducing the

2-4

problem of computind- (n) to that of computindg= at smaller values. Base cases (the valuds(dj andF (2)) need

to be provided.

Finding exact solutions for recurrence relations is not stmeeely difficult process; however, we will not
focus on solution methods for them here. Often a naturabthdndo is to try to guess a solution, and then prove it
by induction. Alternatively, one can use a symbolic compataprogram (such as Maple or Mathematica); these

programs can often generate solutions.

We will occasionally use recurrence relations to desctitlgertinning times of algorithms. For our purposes, we
often do not need to have an exact solution for the running,tioat merely an idea of its asymptotic rate of growth.
For example, the relation

T(N)=2T(n/2)+2n, T(1)=1

has the exact solution (fara power of 2) ofT (n) = 2nlog, n+ n. (Exercise: Prove this by induction.) But for our

purposes, it is generally enough to know that the solutid®(islogn).

The following theorem is extremely useful for such recucemnelations:

Theorem 2.6 The solution to the recurrence relation(if) = aT(n/b) 4 cr¥, where a> 1 and b> 2 are integers

and c and k are positive constants satisfies:

O(n%3) ifa > bk
T(n)is ¢ O(nklogn) ifa=b
O(n¥) if a < b¥.

Data Structures
We shall regard integers, real numbers, and bits, as wellae gomplicated objects such as lists and sets, as
primitive data structures. Recall that a list is just an cedesequence of arbitrary elements.

List q:= [X1, X2, ..., %n].

X1 is called the head of the list.
X, is called the tail of the list.

n=|q| is the size of the list.

2-5

We denote by the concatenation operation. Thyisr is the list that results from concatenating the djstith

the listr.

The operations on lists that are especially important forpouwposes are:

headq) returnxy)

pusH(g,x) q:=[xeq

pop(q) g:=[X2,...,X%n], return(xy)
inject(q, x) g:=qolX

ejec(q) q:= [X1,X2, ..., Xn—1], return(xy)
size() returnf)

The head, pop, and eject operations are not defined for engggy Appropriate return values (either an error,

or an empty symbol) can be designed depending on the implatien
A stackis a list that supports operations head, push, pop.
A queusis a list that supports operations head, inject and pop.
A dequesupports all these operations.

Note that we can implement lists either by arrays or usingiteos as the usual linked lists. Arrays are often
faster in practice, but they are often more complicated tm@am (especially if there is no implicit limit on the

number of items). In either case, each of the above opegstian be implemented in a constant number of steps.

Application: Mergesort

For the rest of the lecture, we will review the procedure rasagt. The input is a list afi numbers, and the
output is a list of the given numbers sorted in increasingpriihe main data structure used by the algorithm will be
a queue. We will assume that each queue operation takes,lastbfhat each comparison {s- y?) takes 1 step.

We will show that mergesort tak&3(nlogn) steps to sort a sequencerofiumbers.

The procedure mergesort relies on a function merge whiabstak input tweorted(in increasing order) lists

of numbers and outputs a single sorted list containing algilten numbers (with repetition).

function merge(s,t)
list st
if s=[] then returnt

2-6

else ift = [] then returns
else ifs(1) <t(1) thenu:= pop(s)
elseu:= pop(t)
return pushf, mergés;t))
end merge

function mergesortg)
lists, g

q=1]
forxes

inject(q, [x)
rof
while sizeq) > 2
u:= pop(q)
v := pop(q)
inject(, merg€u,Vv))
end
if g=1] return(]
else returmg(1)
end mergesort

The correctness of the function merge follows from the folltg fact: the smallest number in the input is either
s(1) or t(1), and must be the first number in the output list. The rest ofotliput list is just the list obtained by

mergings andt after deleting that smallest number.

The number of steps for each invocation of function merg8(i¥) steps. Since each recursive invocation of

merge removes an element from eitlsanr t, it follows that function merge halts i@(|s| + [t|) steps.

Question: Can you design an iterative (rather than recursive) versiomerge? How much time does is take?

Which version would be faster in practice— the recursiveheriterative?

The iterative algorithm mergesort usgas a queue of lists. (Note that it is perfectly acceptableateHists of
lists!) It repeatedly merges together the two lists at toatfiof the queue, and puts the resulting list at the tail of the

queue.

The correctness of the algorithm follows easily from the that we start with sorted lists (of length 1 each),
and merge them in pairs to get longer and longer sorted listtil, only one list remains. To analyze the running
time of this algorithm, let us place a special markénitially at the end of they. Whenever the markerreaches the
front of g, and is either the first or the second element,offe move it back to the end gf Thus the presence of the

markerx makes no difference to the actual execution of the algoritlisnonly purpose is to partition the execution

2-7

[[7,9],[1,4],]6,16],[2,10«[3,11,12,14],[5,8,13 15|

Q:
Q:[[6,16,[2,10/«[3,11,12 14],[5,8,13,15,[1,4,7,9]]|

Figure 2.1: One step of the mergesort algorithm.

of the algorithm into phases: where a phase is the time betwee successive visits of the marketto the end

of theqg. Then we claim that the total time per phas®is). This is because each phase just consists of pairwise
merges of disjoint lists in the queue. Each such merge takesgroportional to the sum of the lengths of the lists,
and the sum of the lengths of all the listsgnis n. On the other hand, the number of lists is halved in each phase

and therefore the number of phases is at mosthldtherefore the total running time of mergesorGglogn).

An alternative analysis of mergesort depends on a recynsitieer than iterative, description. Suppose we have
an operation that takes a list and splits it into two equad-giarts. (We will assume our list size is a power of 2, so
that all sublists we ever obtain have even size or are of kefhgt Then a recursive version of mergesort would do

the following:

function mergesortg

lists s, S
if size(s) = 1 then retur(s)

split(s, s1,)

S = mergesofs;)

S, = mergesotts,)

return(mergés;, s,))
end mergesort

Here split splits the lissinto two parts of equal length ands,. The correctness follows easily from induction.

Let T(n) be the number of comparisons mergesort performs on listermgthn. ThenT(n) satisfies the
recurrence relatio (n) < 2T(n/2) +n— 1. This follows from the fact that to sort lists of lengthwe sort two
sublists of lengthn/2 and then merge them using (at most)} 1 comparisons. Using our general theorem on

solutions of recurrence relations, we find tidn) = O(nlogn).

Question: The iterative version of mergesort uses a queue. Impljdhly recursive version is using a stack. Explain

the implicit stack in the recursive version of mergesort.

Question: Solve the recurrence relatidn(n) = 2T (n/2) +n— 1 exactly to obtain an upper bound on the number of

comparisons performed by the recursive mergesort vanatio

