CS124 NP-Completeness Review

Where We Are Headed

Up to this point, we have generally assumed that if we wererg& problem, we could find a way to solve
it. Unfortunately, as most of you know, there are many fundatal problems for which we have no efficient
algorithms. In fact, by classifying these hard problems,came show that there is a large class of simple problems
for which there is (probably) no efficient algorithm— the l&mplete problems. Moreover, if you could design an
efficient algorithm forany oneof these problems, you could design an algorithmdibiof them! It's an all or none
proposition, so if you could solve just one of them, you woboéttome rich and famous overnight. These notes will

review the main concepts behind the theory of NP-compledblpms.

One might ask why it is important to study what problems wencairsolve, instead of focusing on problems
we can solve. Especially for an algorithms course. Thereseweral possible responses, but perhaps the best is that
if you do not know what is impossible, you might waste a grestl f time trying to solve it, instead of coming to
terms with its impossibility and finding suitable alterwas (such as, for example, approximations instead of exact

answers).

Polynomial Running Times

The faster the running time, the better. Linear is greatdaatz is all right, cubic is perhaps a bit slow. But

how exactly should we classify which problems have efficagorithms? Where is the cut off point?

The choice computer scientists have made is to group togathproblems that are solvable polynomial

time That is, we define alass of problem#® as follows:

Definition: P is the set of all problem2& with a yes-no answer such that there is an algorithend a positive

integerk such thatA solvesZ in O(nk) steps (on inputs of size).

Let us clarify some points in the definition. The restrictimnproblems with a yes-no answer is really just a
technical convenience. For example, the problem of findirgrhinimum spanning tree (on a tree with integer
weights) can be recast as the problem of answering the filtpguestion: is the size of the minimum spanning tree
at leastj? If you can answer one question, you can answer the othesid@ing only yes-no problems proves more

convenient.

18-1

Lecture 18 18-2

From the definition, all problems with linear, quadratic, abic time algorithms are all if?. But so are
problems with algorithms that require tin@n*°). This may seem a little strange; for example, would a problem
with an algorithm that runs in tim@(n'%0) really be said to have an efficient solution? But the maintaiidefining
the classP is to separate these problems from those that requipenential timgor Q(2") steps (for some > 0.
Problems that require this much time to solve are cleaslymptoticallyinefficient, compared with polynomial time

algorithms. The clasB is also useful because, as we shall see below, it is closest padiynomial time reductions.

Reductions

Let A and B be two problems whose instances require a “yeshot answer. (For example, 2SAT is such a
problem, as is the question of whether a bipartite graph lpesfact matching.) A (polynomial timegductionfrom
Ato B is a polynomial time algorithnR which transforms an input of problem A into an input for predol B. That
iS, given an inpuk to problem A,R will produce an inpuR(x) to problem B, such that the answerxas yes for

problem A if and only if the answer fdR(x) is yes for problem B.

This idea of reduction should not seem unfamiliar; all aleveyhave seen the idea of reducing one problem
to another. (For example, we recently saw how to reduce thehimg problem into the max-flow problem, which
could be reduced to linear programming.) The only diffeeeis; right now, for convenience we are only considering

yes-no type problems.

))
X Reduction R | R(X Algorithm yes/&o
Input Input for B Output
for A ~/ for B for A

\ Algorithm for A

Figure 18.1: Reductions lead to algorithms.

A reduction from A to B, together with a polynomial time algbm for B, yields a polynomial time algorithm

for A. (See Figure 18.1.) Let us explain this in more detadlr &ny inputx of A of sizen, the reductiorR takes time

Lecture 18 18-3

p(n), wherep is a polynomial, to produce an inp&(x) for B. This inputR(x) can have size at mosin), since
this is the largest inpuR could possibly construct ip(n) time! We now submiRR(x) as an input to the algorithm
for B, which we assume runs in tinggm) on inputs of sizem, whereq is another polynomial. The algorithm for B
gives us the right answer for B d®(x), and hence also the right answer for AxorThe total time taken was at most

p(n) 4+ q(p(n)), which is itself just a polynomial in!

This idea of reduction explains why the cla@ds so useful. If we have a problem A B, and some other

problem B reduces to it, then B is las well. Hence we say thRtis closedunder polynomial time reductions.

If we can reduce A to B, we are essentially establishing tiigg or take a polynomialA is no harder or B. We
can write this as

A <B,

where here the inequality is represents a fact about the leaitips of the two problems. If we know that B is easy,

then A< B establishes that B is easy.

We can also look at this inequality the other way. If we knoatth is hard, then the inequality establishes that
B is hard. Itis this implication that we will now use, to shdwat problems are hard. This way of using reductions is

very different from the way we have used reductions so fas;also much more sophisticated and counter-intuitive.

Short Certificates and the Class NP

We will now begin to examine a class of problems that incluskegeral “hard” problems. What we mean by
“hard” in this setting is that although nobody has yet shohat there are no polynomial time algorithms to solve

these problems, there is overwhelming evidence that thigisase.

Recall that the clasB is the class of yes-no problems that can be solved in polyaldimie. The new class we
define,NP, consists of yes-no problems with a different propertyhd tinswer to the problem is yes, then there is a
short certificatethat can be checked to show that the answer is correct. A b fioomally, a short certificate must

have the following properties:

e It must beshort the length of the polynomial is no more than polynomial ia tngth of the input.

¢ It mustcertify: there is a polynomial time checker (an algorithm!) thaewkhe input and the short certificate

and checks that the certificate is valid.

The idea of the short certificate is the following: a problesmiri NP if someone else can convince you in

Lecture 18 18-4

polynomial timethat the answer is yes when the answer is yes, and they cayigtdu into thinking the answer is

yes when the answer is no.
Let us move from the abstract to some specific problems.

Compositeness:Testing whether a number is composite iNR, since if somebody wanted to convince you
a number is composite, they could give you its factorizafiiie short certificate). You could then check that the

factorization was correct by doing the multiplication, inlynomial time. (Notice you can'’t be fooled!)

3SAT: 3SAT is like the 2SAT problem we have seen in the homeworkepgixthat there can be up to three
literals in each clause. 3SAT is NP, since if somebody wanted to convince you that a formula fisfeble,
they could give you a satisfying truth assignment (the sbertificate). You could then check the proposed truth

assignment in polynomial time by plugging it in and checkéagh clause. (Again, notice you can't be fooled!)

Finally, note thatP is a subset oNP. To see why, note that if a problem is iy we don't even need a short

certificate; someone can convince themselves of the carsster just by running the polynomial time algorithm!
Now, let us see an example of a problem which does not appéavtoshort certificates:

not-satisfiable-3SAT: This is like 3SAT, but now the answer is yes if there is no §gtig assignment for the
formula. Given a formula with no solution, how can we conémeople there is no solution? The obvious way is to

list all possible truth assignments, and show that they davaok, but this would not yield ahortcertificate.

NP-completeness

The “hard” problems we will be looking at will be the hardesoipiems inNP; we call these problemklP-

complete. ArNP-complete problem will have two properties:

e itisin NP

¢ all other problems imNP reduce to it

Thus, our concept of “being the hardest” is based on redustidf all other problems ilNP reduce to a
problem, it must be at least as hard as any of them! It may segmising, that there are problemsNP that have

this property.

We will start by proving (well, sketching a proof) that an ibastated problemci rcuit SAT, is NP-

complete. Once we have a first problem done, it will turn oub&omuch easier to prove that other problems

Lecture 18 18-5

areNP-complete. This is because once we have one NP-completprplb is much easier to prove others:

Claim 18.1 Suppose problem A NP-complete, problem B is iNP, and problem A reduces to problem B. Then
problem B isNP-complete.

Intuitively, this must be true because if A reduces to B, tBda at least as hard as A. So as long as B N

and the hardest problems NP are theNP-complete ones, then B must alsolE-complete.

Slightly more formally, we have to show that every problenNR reduces to B. But we already know that
every problem reduces to A, and A reduces to B. By combinimyicgons, as in the picture below, we have that
every problem ifNP reduces to B. So once we have one problem, we can start lyilghirichains” ofNP-complete

problems easily.

X Reduction R | R(X Algorithm
Input nput | fOrB
for A for B

\ Algorithm for A

Figure 18.2: If C reduces to A, and A reduces to B, then C resltm®. (Transitivity!)

Cook’s Theorem

The problencircuit SAT is defined as follows: given a Boolean circuit and the valdfesome of its inputs, is

there a way to set the rest of its inputs so that the output i$ i§2asy to show thatircuit SAT is in NP.

Claim 18.2 A problem is inNP if and only if it can be reduced toi r cui t SAT.

This statement is known as Cook’s theorem, and it is one afnb&t important results in Computer Science.

Lecture 18 18-6

One direction is easy. If a problem A can be reduceditouit SAT , it can easily be shown to be MP. A
short certificate for an input to problem A consists of thershertificate for the circuit that results from running the
reduction from A tocircuit SAT on the input. Given this short certificate, a polynomial tiedgorithm could run

the reduction on the input to A to get the appropriate citairid then use the short certificate to check the circuit.

The other direction is more complicated, so we offer a sonatwiformal explanation. Suppose that we have
a problem A inNP. We need to show that it reducesdincuit SAT . Since A is inNP, there is a polynomial time
algorithm that checks the validity of inputs of A togethetiwthe appropriate certificates. But we could program this
algorithm on a computer, and this program would really bégusuge Boolean circuit. (After all, computers are just
big Boolean circuits themselves!) The input to this cirdsithe input to problem A along with a short certificate.
Now suppose we are given a specific instarad A. The question of whethex is a yes instance or no instance
is exactly the question of whether there is an appropriatet stertificate, which is exactly the same question ask
asking if there is some way of setting the rest of the inputhiéoBoolean circuit so that the answer is T. Hence, the

construction of the circuit we described is the sought rédndrom A to circuit SAT !

More NP-complete problems

Now that we have proved thafrcuit SAT is NP-complete, we will build on this to find othéMP-complete
problems. For example, we will now show thaitcuit SAT reduces t@SAT, and since8SAT is clearly inNP, this
shows thaBSAT is NP-complete.

Suppose we are given a circ@itwith some input gates unset. We must (quickly, in polynortirag) construct
from this circuit a3SAT-formulaR(C) which is satisfiable if and only if there is a satisfying assigent of the circuit

inputs. In essenceye want to mimic the actions of the circuit with a suitablenfioita

The formulaR(C) will have one variable for each gate (that is, each input,eaxh output of an AND, OR, or
NOT), and each gate will also lead to certain clauses, agidedcbelow:
1. If xis a T input gate, then add the clausg.
2. If xis a F input gate, then add the clayge
3. If xis an unknown input gate, then no clauses are added for it.

4. If xis the OR of gatey andz, then add the claus€gV x), (zV x), and(XVyV z). (Itis easy to see that the

conjunction of these clauses is equivalenpdte y Vv .

Lecture 18 18-7

5. If xis the AND of gatey andz, then add the claus€gV y), (XV z), and(yVzV x). (Itis easy to see that the

conjunction of these clauses is equivalenpdte- y A Z].

6. If xis the NOT of gate/, then add the claus€®\Vy) and(xVy). (Itis easy to see that the conjunction of these

clauses is equivalent {a =Y.

7. Finally, if gatex is the output gate, add the clause, expressing the condition that the output gate should be
T.

The conjunction of all of these clauses yields the fornR(@). It should be apparent that this reducti@rcan
be accomplished in polynomial (in fact, in linear) time. Texify it is a valid reduction, we must now show that

has a setting of the unknown input gates that makes the otiffpaind only if R(C) is satisfiable

SupposeC has a valid setting. Then we claiR(C) can be satisfied by the truth assignment that gives each
variable the same value as the appropriate gate whenrun on this valid setting. This truth assignment must
satisfy all the clauses d®(C), since we constructeR(C) to compute the same values as the circuit. Note that the

output gate is T fo€C, and hence the final clause listed above is also satisfied.

Conversely (and this is more subtle!), if there is a validhrassignment foR(C), then there is a valid setting
for the inputs ofC that makes the output T. Just set the unknown input gategim#émnner proscribed by the truth
assignment foR(C). SinceR(C) effectively mimics the computation of the circuit, we kndwetoutput gate must

be T when these inputs are applied.
From 3SAT to Integer Linear Programming

We must take a 3SAT formula and convert it to an integer liragram. This reduction is easy. Restrict all
variables so that they are either 0 or 1 by including the caimgtO< x < 1. Now a clause such &gV yV z) can be
turned into a linear constraint by replacingby +, a literalx by x, and a literalx by (1 — x), and then forcing the
whole thing to be at least 1. For example, the above clausene=sx+ (1—y) +z > 1. The appropriate clause is
clearly satisfied if and only if this constraint is; all terros the left of the equation are either 0 or 1, and there is at

least one 1 if and only if one of the literals of the clauseu®tr

It is somewhat strange that linear programming can be sgiefthomial time, but when we try to restrict the

solutions to be integers, then the problem appears not baldelin polynomial time (since it iIslP-complete).
From 3SAT to Independent Set

In an input tolndependent Setwe are given a grapé = (V,E) and an integeK. We are asked if there is a set

Lecture 18 18-8

| CV with |I| > K such that ifu,v € | then(u,v) ¢ E. That is, we are asked to find a set of vertices of size at least

K such that no two are connected by an edge. The problem idycleadP. (Why?)

We reduce3SAT to Independent Set That is, given a Boolean formutawith at most 3 literals in each clause,
we must (in polynomial time) come up with a gra@h= (V,E) and an integeK so thatG has an independent set of

sizeK or more if and only if the formulapis satisfiable.

The reduction is illustrated in Figure 18.3. For each clausehave a group of vertices, one for each literal in
the clause, connected by all possible edges. Between gabwestices, we connect two vertices if they correspond
to opposite literals (likex andx). We letK be the number of clauses. This completes the reduction,tasdlear
that it can be accomplished in polynomial time. We now shaevdlis a satisfying truth assignment fpif and only

if there is an independent set of size at ldast

If there is a truth assignment fay; then there is at least one true literal in each clause. Rigtkgne for each
clause in any way. The sétof corresponding vertices must give an independent setzefksi This is because we
use only one vertex per clause, so the only wayuld not be independent is if it included two opposite #tey

which is impossible, because the satisfying assignmemtataset two opposite literals to T.

Now supposes has an independent sebf sizeK. Since there ar& groups, and each group is completely
interconnected, there must be one vertex from each grodp i@onsider the assignment that sets all literals in
the assignment to T, their opposites to F, and any unusedblasi arbitrarily. It is clear that this is a valid truth

assignment (since if a variable is set to T, its opposite rbestet to F).
From Independent Set to Vertex Cover and Clique

LetG = (V,E) be a graph. Avertex coveof Gis a selG C V such that all edges iB have at least one endpoint

Lecture 18 18-9

in C. That is, each edge is adjacent to at least one vertex in thexveover. Thé/ertex Cover problem is, given a

graphG and a numbekK, to determine ifG has a vertex cover of size at mad&t

The reduction fromindependent Setto Vertex Cover is immediate from the following observatio€ is a
vertex cover ofG = (V,E) if and only ifV —C is an independent set! (For example, supdasean independent set,
and consider some edge,Vv). Bothu andv can'’t be in the independent set,\8o- | contains eitheu or v or both,
and the edge is covered.) So the reduction is trivial; giveimatance G, K) of Independent Set we produce the

instance(G, |V | — K) of Vertex Cover.

A cliquein a graph is a set of fully connected nodes— every possilde edtween every pair of the nodes is
there. Theclique problem asks whether there is a clique of dizer larger in the graph. Again, the reduction from
Independent Setis immediate from a simple observation. [@the thecomplemenbf G, which is the graph with
the same nodes &3, but the edges of are precisely those edges that are missing f@niThenC is a clique in

G = (V,E) ifand only if C is an independent set (. (See Figure 18.4.)

O

Figure 18.4: Independent sets become cliques in the conepliem

