
CS124 NP-Completeness Review

Where We Are Headed

Up to this point, we have generally assumed that if we were given a problem, we could find a way to solve

it. Unfortunately, as most of you know, there are many fundamental problems for which we have no efficient

algorithms. In fact, by classifying these hard problems, wecan show that there is a large class of simple problems

for which there is (probably) no efficient algorithm– the NP-complete problems. Moreover, if you could design an

efficient algorithm forany oneof these problems, you could design an algorithm forall of them! It’s an all or none

proposition, so if you could solve just one of them, you wouldbecome rich and famous overnight. These notes will

review the main concepts behind the theory of NP-complete problems.

One might ask why it is important to study what problems we cannot solve, instead of focusing on problems

we can solve. Especially for an algorithms course. There areseveral possible responses, but perhaps the best is that

if you do not know what is impossible, you might waste a great deal of time trying to solve it, instead of coming to

terms with its impossibility and finding suitable alternatives (such as, for example, approximations instead of exact

answers).

Polynomial Running Times

The faster the running time, the better. Linear is great, quadratic is all right, cubic is perhaps a bit slow. But

how exactly should we classify which problems have efficientalgorithms? Where is the cut off point?

The choice computer scientists have made is to group together all problems that are solvable inpolynomial

time. That is, we define aclass of problemsP as follows:

Definition: P is the set of all problemsZ with a yes-no answer such that there is an algorithmA and a positive

integerk such thatA solvesZ in O(nk) steps (on inputs of sizen).

Let us clarify some points in the definition. The restrictionto problems with a yes-no answer is really just a

technical convenience. For example, the problem of finding the minimum spanning tree (on a tree with integer

weights) can be recast as the problem of answering the following question: is the size of the minimum spanning tree

at leastj? If you can answer one question, you can answer the other; considering only yes-no problems proves more

convenient.

18-1

Lecture 18 18-2

From the definition, all problems with linear, quadratic, orcubic time algorithms are all inP. But so are

problems with algorithms that require timeΘ(n100). This may seem a little strange; for example, would a problem

with an algorithm that runs in timeΘ(n100) really be said to have an efficient solution? But the main point of defining

the classP is to separate these problems from those that requireexponential time, or Ω(2nε
) steps (for someε > 0.

Problems that require this much time to solve are clearlyasymptoticallyinefficient, compared with polynomial time

algorithms. The classP is also useful because, as we shall see below, it is closed under polynomial time reductions.

Reductions

Let A and B be two problems whose instances require a “yes” or “no” answer. (For example, 2SAT is such a

problem, as is the question of whether a bipartite graph has aperfect matching.) A (polynomial time)reductionfrom

A to B is a polynomial time algorithmR which transforms an input of problem A into an input for problem B. That

is, given an inputx to problem A,R will produce an inputR(x) to problem B, such that the answer tox is yes for

problem A if and only if the answer forR(x) is yes for problem B.

This idea of reduction should not seem unfamiliar; all alongwe have seen the idea of reducing one problem

to another. (For example, we recently saw how to reduce the matching problem into the max-flow problem, which

could be reduced to linear programming.) The only difference is, right now, for convenience we are only considering

yes-no type problems.

x

Input
for A

yes/no

Output
for A

Reduction R R(x)

Input
for B

Algorithm
for B Output

for B

Algorithm for A

Figure 18.1: Reductions lead to algorithms.

A reduction from A to B, together with a polynomial time algorithm for B, yields a polynomial time algorithm

for A. (See Figure 18.1.) Let us explain this in more detail. For any inputx of A of sizen, the reductionR takes time

Lecture 18 18-3

p(n), wherep is a polynomial, to produce an inputR(x) for B. This inputR(x) can have size at mostp(n), since

this is the largest inputR could possibly construct inp(n) time! We now submitR(x) as an input to the algorithm

for B, which we assume runs in timeq(m) on inputs of sizem, whereq is another polynomial. The algorithm for B

gives us the right answer for B onR(x), and hence also the right answer for A onx. The total time taken was at most

p(n)+q(p(n)), which is itself just a polynomial inn!

This idea of reduction explains why the classP is so useful. If we have a problem A inP, and some other

problem B reduces to it, then B is inP as well. Hence we say thatP is closedunder polynomial time reductions.

If we can reduce A to B, we are essentially establishing that,give or take a polynomial, A is no harder or B. We

can write this as

A ≤ B,

where here the inequality is represents a fact about the complexities of the two problems. If we know that B is easy,

then A≤ B establishes that B is easy.

We can also look at this inequality the other way. If we know that A is hard, then the inequality establishes that

B is hard. It is this implication that we will now use, to show that problems are hard. This way of using reductions is

very different from the way we have used reductions so far; itis also much more sophisticated and counter-intuitive.

Short Certificates and the Class NP

We will now begin to examine a class of problems that includesseveral “hard” problems. What we mean by

“hard” in this setting is that although nobody has yet shown that there are no polynomial time algorithms to solve

these problems, there is overwhelming evidence that this isthe case.

Recall that the classP is the class of yes-no problems that can be solved in polynomial time. The new class we

define,NP, consists of yes-no problems with a different property: if the answer to the problem is yes, then there is a

short certificatethat can be checked to show that the answer is correct. A bit more formally, a short certificate must

have the following properties:

• It must beshort: the length of the polynomial is no more than polynomial in the length of the input.

• It mustcertify: there is a polynomial time checker (an algorithm!) that takes the input and the short certificate

and checks that the certificate is valid.

The idea of the short certificate is the following: a problem is in NP if someone else can convince you in

Lecture 18 18-4

polynomial timethat the answer is yes when the answer is yes, and they cannot fool you into thinking the answer is

yes when the answer is no.

Let us move from the abstract to some specific problems.

Compositeness:Testing whether a number is composite is inNP, since if somebody wanted to convince you

a number is composite, they could give you its factorization(the short certificate). You could then check that the

factorization was correct by doing the multiplication, in polynomial time. (Notice you can’t be fooled!)

3SAT: 3SAT is like the 2SAT problem we have seen in the homework, except that there can be up to three

literals in each clause. 3SAT is inNP, since if somebody wanted to convince you that a formula is satisfiable,

they could give you a satisfying truth assignment (the shortcertificate). You could then check the proposed truth

assignment in polynomial time by plugging it in and checkingeach clause. (Again, notice you can’t be fooled!)

Finally, note thatP is a subset ofNP. To see why, note that if a problem is inP, we don’t even need a short

certificate; someone can convince themselves of the correctanswer just by running the polynomial time algorithm!

Now, let us see an example of a problem which does not appear tohave short certificates:

not-satisfiable-3SAT:This is like 3SAT, but now the answer is yes if there is no satisfying assignment for the

formula. Given a formula with no solution, how can we convince people there is no solution? The obvious way is to

list all possible truth assignments, and show that they do not work, but this would not yield ashortcertificate.

NP-completeness

The “hard” problems we will be looking at will be the hardest problems inNP; we call these problemsNP-

complete. AnNP-complete problem will have two properties:

• it is in NP

• all other problems inNP reduce to it

Thus, our concept of “being the hardest” is based on reductions. If all other problems inNP reduce to a

problem, it must be at least as hard as any of them! It may seem surprising, that there are problems inNP that have

this property.

We will start by proving (well, sketching a proof) that an easily stated problem,circuit SAT, is NP-

complete. Once we have a first problem done, it will turn out tobe much easier to prove that other problems

Lecture 18 18-5

areNP-complete. This is because once we have one NP-complete problem, it is much easier to prove others:

Claim 18.1 Suppose problem A isNP-complete, problem B is inNP, and problem A reduces to problem B. Then

problem B isNP-complete.

Intuitively, this must be true because if A reduces to B, thenB is at least as hard as A. So as long as B is inNP,

and the hardest problems inNP are theNP-complete ones, then B must also beNP-complete.

Slightly more formally, we have to show that every problem inNP reduces to B. But we already know that

every problem reduces to A, and A reduces to B. By combining reductions, as in the picture below, we have that

every problem inNP reduces to B. So once we have one problem, we can start building up “chains” ofNP-complete

problems easily.

x

Input
for A

yes/no

Output
for A

Reduction R R(x)

Input
for B

Algorithm
for B Output

for B

Algorithm for A

Figure 18.2: If C reduces to A, and A reduces to B, then C reduces to B. (Transitivity!)

Cook’s Theorem

The problemcircuit SAT is defined as follows: given a Boolean circuit and the values of some of its inputs, is

there a way to set the rest of its inputs so that the output is T?It is easy to show thatcircuit SAT is in NP.

Claim 18.2 A problem is inNP if and only if it can be reduced tocircuit SAT.

This statement is known as Cook’s theorem, and it is one of themost important results in Computer Science.

Lecture 18 18-6

One direction is easy. If a problem A can be reduced tocircuit SAT , it can easily be shown to be inNP. A

short certificate for an input to problem A consists of the short certificate for the circuit that results from running the

reduction from A tocircuit SAT on the input. Given this short certificate, a polynomial timealgorithm could run

the reduction on the input to A to get the appropriate circuit, and then use the short certificate to check the circuit.

The other direction is more complicated, so we offer a somewhat informal explanation. Suppose that we have

a problem A inNP. We need to show that it reduces tocircuit SAT . Since A is inNP, there is a polynomial time

algorithm that checks the validity of inputs of A together with the appropriate certificates. But we could program this

algorithm on a computer, and this program would really be just a huge Boolean circuit. (After all, computers are just

big Boolean circuits themselves!) The input to this circuitis the input to problem A along with a short certificate.

Now suppose we are given a specific instancex of A. The question of whetherx is a yes instance or no instance

is exactly the question of whether there is an appropriate short certificate, which is exactly the same question ask

asking if there is some way of setting the rest of the inputs tothe Boolean circuit so that the answer is T. Hence, the

construction of the circuit we described is the sought reduction from A to circuit SAT !

More NP-complete problems

Now that we have proved thatcircuit SAT is NP-complete, we will build on this to find otherNP-complete

problems. For example, we will now show thatcircuit SAT reduces to3SAT, and since3SAT is clearly inNP, this

shows that3SAT is NP-complete.

Suppose we are given a circuitC with some input gates unset. We must (quickly, in polynomialtime) construct

from this circuit a3SAT-formulaR(C) which is satisfiable if and only if there is a satisfying assignment of the circuit

inputs. In essence,we want to mimic the actions of the circuit with a suitable formula.

The formulaR(C) will have one variable for each gate (that is, each input, andeach output of an AND, OR, or

NOT), and each gate will also lead to certain clauses, as described below:

1. If x is a T input gate, then add the clause(x).

2. If x is a F input gate, then add the clause(x).

3. If x is an unknown input gate, then no clauses are added for it.

4. If x is the OR of gatesy andz, then add the clauses(y∨ x), (z∨ x), and(x∨ y∨ z). (It is easy to see that the

conjunction of these clauses is equivalent to[x = y∨z].

Lecture 18 18-7

5. If x is the AND of gatesy andz, then add the clauses(x∨y), (x∨z), and(y∨z∨x). (It is easy to see that the

conjunction of these clauses is equivalent to[x = y∧z].

6. If x is the NOT of gatey, then add the clauses(x∨y) and(x∨y). (It is easy to see that the conjunction of these

clauses is equivalent to[x = y].

7. Finally, if gatex is the output gate, add the clause(x), expressing the condition that the output gate should be

T.

The conjunction of all of these clauses yields the formulaR(C). It should be apparent that this reductionR can

be accomplished in polynomial (in fact, in linear) time. To verify it is a valid reduction, we must now show thatC

has a setting of the unknown input gates that makes the outputT if and only if R(C) is satisfiable.

SupposeC has a valid setting. Then we claimR(C) can be satisfied by the truth assignment that gives each

variable the same value as the appropriate gate whenC is run on this valid setting. This truth assignment must

satisfy all the clauses ofR(C), since we constructedR(C) to compute the same values as the circuit. Note that the

output gate is T forC, and hence the final clause listed above is also satisfied.

Conversely (and this is more subtle!), if there is a valid truth assignment forR(C), then there is a valid setting

for the inputs ofC that makes the output T. Just set the unknown input gates in the manner proscribed by the truth

assignment forR(C). SinceR(C) effectively mimics the computation of the circuit, we know the output gate must

be T when these inputs are applied.

From 3SAT to Integer Linear Programming

We must take a 3SAT formula and convert it to an integer linearprogram. This reduction is easy. Restrict all

variables so that they are either 0 or 1 by including the constraint 0≤ x≤ 1. Now a clause such as(x∨y∨z) can be

turned into a linear constraint by replacing∨ by +, a literalx by x, and a literalx by (1− x), and then forcing the

whole thing to be at least 1. For example, the above clause becomesx+(1− y)+ z≥ 1. The appropriate clause is

clearly satisfied if and only if this constraint is; all termson the left of the equation are either 0 or 1, and there is at

least one 1 if and only if one of the literals of the clause is true.

It is somewhat strange that linear programming can be solvedpolynomial time, but when we try to restrict the

solutions to be integers, then the problem appears not be solvable in polynomial time (since it isNP-complete).

From 3SAT to Independent Set

In an input toIndependent Setwe are given a graphG = (V,E) and an integerK. We are asked if there is a set

Lecture 18 18-8

I ⊆V with |I | ≥ K such that ifu,v∈ I then(u,v) /∈ E. That is, we are asked to find a set of vertices of size at least

K such that no two are connected by an edge. The problem is clearly in NP. (Why?)

We reduce3SAT to Independent Set. That is, given a Boolean formulaφ with at most 3 literals in each clause,

we must (in polynomial time) come up with a graphG= (V,E) and an integerK so thatG has an independent set of

sizeK or more if and only if the formulaφ is satisfiable.

The reduction is illustrated in Figure 18.3. For each clause, we have a group of vertices, one for each literal in

the clause, connected by all possible edges. Between groupsof vertices, we connect two vertices if they correspond

to opposite literals (likex andx). We letK be the number of clauses. This completes the reduction, and it is clear

that it can be accomplished in polynomial time. We now show there is a satisfying truth assignment forφ if and only

if there is an independent set of size at leastK.

x

y

x

yy

x

z

x

y z z

x + y + z

x + y + z

x + y + z

x + y

Figure 18.3: Turning formulae into graphs.

If there is a truth assignment forφ, then there is at least one true literal in each clause. Pick just one for each

clause in any way. The setI of corresponding vertices must give an independent set of sizeK. This is because we

use only one vertex per clause, so the only wayI could not be independent is if it included two opposite literals,

which is impossible, because the satisfying assignment cannot set two opposite literals to T.

Now supposeG has an independent setI of sizeK. Since there areK groups, and each group is completely

interconnected, there must be one vertex from each group inI . Consider the assignment that sets all literals in

the assignment to T, their opposites to F, and any unused variables arbitrarily. It is clear that this is a valid truth

assignment (since if a variable is set to T, its opposite mustbe set to F).

From Independent Set to Vertex Cover and Clique

Let G= (V,E) be a graph. Avertex coverof G is a setG⊆V such that all edges inE have at least one endpoint

Lecture 18 18-9

in C. That is, each edge is adjacent to at least one vertex in the vertex cover. TheVertex Cover problem is, given a

graphG and a numberK, to determine ifG has a vertex cover of size at mostK.

The reduction fromIndependent Setto Vertex Cover is immediate from the following observation:C is a

vertex cover ofG = (V,E) if and only ifV −C is an independent set! (For example, supposeI is an independent set,

and consider some edge(u,v). Bothu andv can’t be in the independent set, soV − I contains eitheru or v or both,

and the edge is covered.) So the reduction is trivial; given an instance(G,K) of Independent Set, we produce the

instance(G, |V|−K) of Vertex Cover.

A clique in a graph is a set of fully connected nodes– every possible edge between every pair of the nodes is

there. Theclique problem asks whether there is a clique of sizeK or larger in the graph. Again, the reduction from

Independent Setis immediate from a simple observation. LetG be thecomplementof G, which is the graph with

the same nodes asG, but the edges ofG are precisely those edges that are missing fromG. ThenC is a clique in

G = (V,E) if and only ifC is an independent set inG. (See Figure 18.4.)

Figure 18.4: Independent sets become cliques in the complement.

