CS124 Lecturel7

Network Flows

Suppose that we are given the network in top of Figure 17.Erevthe numbers indicate capacities, that is, the
amount of flow that can go through the edge in unit time. We wastind the maximum amount of flow that can go

through this network, fronsto T.

This problem can also be reduced to linear programming. We hanonnegative variable for each edge, rep-
resenting the flow through this edge. These variables aretdeérisy, fsg,... We have two kinds of constraints:
capacity constraints such dsa < 5 (a total of 9 such constraints, one for each edge), and flowarwation con-
straints (one for each node excé&andT), such asfap + fgp = fpc + fpor (@ total of 4 such constraints). We wish
to maximizefsa+ fsg, the amount of flow that leaves subject to these constraints. It is easy to see that thaarin

program is equivalent to the max-flow problem. The simplexhoeé would correctly solve it.

In the case of max-flow, it is very instructive to “simulatéiet simplex method, to see what effect its various
iterations would have on the given network. Simplex wouldtstith the all-zero flow, and would try to improve it.
How can it find a small improvement in the flow? Answer: it findsadh fromSto T (say, by depth-first search),
and moves flow along this path of total value equal torttieimumcapacity of an edge on the path (it can obviously

do no better). This is the first iteration of simplex (see Figl7.1).

How would simplex continue? It would look for another patbrifrSto T. Since this time we already partially
(or totally) use some of the edges, we should do depth-fiesicheon the edges that have sorasidual capacity
above and beyond the flow they already carry. Thus, the €dgevould be ignored, as if it were not there. The
depth-first search would now find the pa&dh- A— D — T, and augment the flow by two more units, as shown in

Figure 17.1.

Next, simplex would again try to find a path fro&to T. The path is non6— A—B—-D —T (the edge€ —T

andA — D are full are are therefore ignored), and we augment the floshan in the bottom of Figure 17.1.

Next simplex would again try to find a path. But since edgesD, C— T, andS— B are full, they must be
ignored, and therefore depth-first search would fail to finghth, after marking the nodé&A, C as reachable from

S. Simplex then returns the flow shown, of value 6, as maximum.

How can we be sure that it is the maximum? Notice that thesshedde nodes define @t (a set of nodes

17-1

17-2

Lecture 17

minimum cut,

5 ,capacity 6

T

Figure 17.1: Max flow

Lecture 17 17-3

containingSbut notT), and thecapacityof this cut (the sum of the capacities of the edges going othisfset) is
6, the same as the max-flow value. (It must be the same, siicldiv passes through this cut.) The existence of

this cut establishes that the flow is optimum!

There is a complication that we have swept under the rug somaen we do depth-first search looking for a
path, we use not only the edges that are not completely fullywe must also traversa the opposite directiomll
edges that already have some non-zero flow. This would haveftbct of canceling some flow; canceling may be
necessary to achieve optimality, see Figure 17.2. In thigdighe only way to augment the current flow is via the
pathS—B— A—T, which traverses the edge— B in the reverse direction (a legal traversal, sirice B is carrying

non-zero flow).

Figure 17.2: Flows may have to be canceled

In general, a path from the source to the sink along which weierease the flow is called augmenting
path We can look for an augmenting path by doing for example ardépt search along theesidual network
which we now describe. For an ed@e V), let c(u,v) be its capacity, and let(u,v) be the flow across the edge.
Note that we adopt the following convention: if 4 units flowrinu to v, thenf(u,v) = 4, andf (v,u) = —4. That s,
we interpret the fact that we could reverse the flow acrosgige as being equivalent to a “negative flow”. Then the
residual capacityof an edggu, V) is just

c(u,v) — f(u,v).
The residual network has the same vertices as the origimghgrthe edges of the residual network consist of all
weighted edges with strictly positive residual capacitigeTdea is then if we find a path from the source to the sink

in the residual network, we have an augmenting path to iser¢ae flow in the original network. As an exercise,

you may want to consider the residual network at each stefgiumré 17.1.

Lecture 17 17-4

Suppose we look for a path in the residual network using dépthsearch. In the case where the capacities
are integers, we will always be able to push an integral amofifiow along an augmenting path. Hence, if the
maximum flow isf*, the total time to find the maximum flow 3(E f*), since we may have to do &(E) depth

first search up td* times. This is not so great.

Note that we do not have to do a depth-first search to find an enting path in the residual network. In fact,
using a breadth-first search each time yields an algoritrahgtovably runs irO(V E?) time, regardless of whether
or not the capacities are integers. We will not prove thigh&here are also other algorithms and approaches to the

max-flow problem as well that improve on this running time.

To summarize: the max-flow problem can be easily reduceahéaliprogramming and solved by simplex. But
it is easier to understand what simplex would do by followitsgiterations directly on the network. It repeatedly
finds a path fronBto T along edges that are not yet full (have non-zero residualaity), and also along any reverse
edges with non-zero flow. If aB— T path is found, we augment the flow along this path, and rep&htn a path
cannot be found, the set of nodes reachable f&uaefines a cut of capacity equal to the max-flow. Thhe,value
of the maximum flow is always equal to the capacity of the mimirout This is the importantnax-flow min-cut
theorem One direction (that max-flowmin-cut) is easy (think about iany cut is larger tharany flow); the other

direction is proved by the algorithm just described.

Duality

As it turns out, the max-flow min-cut theorem is a special azs&@ more general phenomenon calthahlity.
Basically, duality means that for each maximization probkbere is a corresponding minimizations problem with
the property that any feasible solution of the min problergresater than or equal any feasible solution of the max

problem. Furthermore, and more importantlyey have the same optimum

Consider the network shown in Figure 17.3, and the corredipgrmax-flow problem. We know that it can be

written as a linear program as follows:

Lecture 17 17-5

Figure 17.3: A simple max-flow problem

max fsa +fsp
fsa <3
fsg <2
faB <1

fsa —fag —fatT =0
fsa +fas —fer =0

Consider now the following linear program:

min 3ysa +2yss +Yas +Yar +3YBT

YsA +Ua >1
YsB +ug >1
YAB —ua +ug >0 D
YAT —Ua >0
YBT -ug >0
y>0

This LP describes the min-cut problem! To see why, suppcsetiieu, variable is meant to be 1 Ais in the
cut with S, and 0 otherwise, and similarly f@ (naturally, by the definition of a cug will always be withSin the
cut, andT will never be withS). Each of they variables is to be 1 if the corresponding edge contributebaaut
capacity, and 0 otherwise. Then the constraints make satdltthse variables behave exactly as they should. For
example, the second constraint states thatis not with S, then SA must be added to the @i third one states

thatif A is with S and B is ndthis is the only case in which the suaup + ug becomes-1), then AB must contribute

Lecture 17 17-6

to the cut.And so on. Although thg andu’s are free to take values larger than one, they will be “sladihby the

minimization down to 1 or O.

Let us now make a remarkable observation: these two proghaws strikingly symmetricdual, structure.
This structure is most easily seen by putting the linear g in matrix form. The first program, which we call

the primal), we write as:

max{1 1 O O O
1 0 0 0 0]<|3
0 1 0 0 0|<L|2
0 01 0 O0|<|1
0 0 0 1 0|<]|1
0O 0 0 0 1|<L|3
1 0 -1 -1 1 |=]0
01 1 0 -1|=|0
> =z =z =z 2

Here we have removed the actual variable names, and we helueléd an additional row at the bottom denoting

that all the variables are non-negative. (An unrestrictadable will be denoted by unr.

The second program, which we call the dua),(we write as:

mn 3 2 1 1 3 O 0
1 0 0 0 0 1 0|>]1
0 1 0 0 0 O 11>]1
0 01 0 0 -1 1,>]0
0 0 0O1 0-1 0/|>]0
0O 0 OO 1 0 -1/>]0
> > > > > unr unr

Each variable oP corresponds to a constraint Bf and vice-versa. Equality constraints correspond to unre-
stricted variables (tha's), and inequality constraints to restricted variablednilization becomes maximization.

The matrices are transpose of one another, and the roleghtthand side and objective function are interchanged.

Such LP’s are calledual to each other. It is mechanical, given an LP, to form its d@alppose we start with
a maximization problem. Change all inequality constraints < constraints, negating both sides of an equation if

necessary. Then

Lecture 17 17-7

e transpose the coefficient matrix

e invert maximization to minimization

¢ interchange the roles of the right-hand side and the obgftinction

¢ introduce a nonnegative variable for each inequality, andraestricted one for each equality

¢ for each nonnegative variable introduce &onstraint, and for each unrestricted variable introdutequality

constraint.

If we start with a minimization problem, we instead begin byning all inequality constraints inte: con-
straints, we make the dual a maximization, and we changasstep so that each nonnegative variable corresponds
to a< constraint. Note that it is easy to show from this descriptioat the dual of the dual is the original primal

problem!

By the max-flow min-cut theorem, the two LF®andD above have the same optimurm fact, this is true
for general dual LP’s! This is theduality theoremwhich can be stated as follows (we shall not prove it; thea bes
proof comes from the simplex algorithm, very much as the fil@x-min-cut theorem comes from the max-flow

algorithm):

If an LP has a bounded optimum, then so does its dual, and theptimal values coincide.

Matching

It is often useful tocomposeeductions. That is, we can reduce a problem A to B, and B tm@ since C we

know how to solve, we end up solving A. A good example is thectniagy problem.

Suppose that thiipartite graph shown in Figure 17.4 records the compatibility relatbetween four boys and
four girls. We seek a maximum matching, that is, a set of edlggisis as large as possible, and in which no two

edges share a node. For example, in Figure 17.4 theredmaletematching (a matching that involves all nodes).

To reduce this problem to max-flow, we create a new source aravasink, connect the source with all boys
and all girls with the sinks, and direct all edges of the ardibipartite graph from the boys to the girls. All edges

have capacity one. It is easy to see that the maximum flow smtbiwork corresponds to the maximum matching.

Well, the situation is slightly more complicated than weetestl above: what is easy to see is that the optimum

integer-valuedlow corresponds to the optimum matching. We would be at aitdsspreting as a matching a flow

Lecture 17 17-8

Al Eve

Bob Fay S T
Charlie Grace

Dave Helen

Figure 17.4: Reduction from matching to max-flow (all cagiasiare 1)

that ships .7 units along the edge Al-Eve! Fortunately, vitatalgorithm in the previous section establishes isithat
the capacities are integers, then the maximum flow is intdes is because we only deal with integers throughout

the algorithm. Hencetegrality comes for free in the max-flow problem

Unfortunately, max-flow is about the only problem for whictidgrality comes for free. It is a very difficult
problem to find the optimum solution (anysolution) of a general linear program with the additionat&toaint that

(some or all of) the variables be integers. We will see whyomhicoming lectures.

Games

We can represent various situations of conflict in life imierof matrix games For example, the game shown
below is therock-paper-scissorgame. The Row player chooses a row strategy, the Columnratageses a column

strategy, and then Column pays to Row the value at the imtose(if it is negative, Row ends up paying Column).

Games do not necessarily have to be symmetric (that is, RavCalumn have the same strategies, or, in terms of

Lecture 17 17-9

matrices A = —A"). For example, in the following fictitiou€linton-Dolegame the strategies may be the issues on
which a candidate for office may focus (the initials stand“Bmronomy,” “society,” “morality,” and “tax-cut”) and

the entries are the number of voters lost by Column.

m t
el 3 -1
s\—2 1

We want to explore how the two players may play “optimallyésle games. It is not clear what this means. For
example, in the first game there is no such thing as an optimak” strategy (it very much depends on what your
opponent does; similarly in the second game). But supp@deytiu play this game repeatedly. Then it makes sense
to randomize That is, consider a game given by amnx n matrix Gj;; define amixed strategyor the row player
to be a vectorxy,...,xm), such tha; > 0, andy ", x; = 1. Intuitively, x; is the probability with which Row plays

strategyi. Similarly, a mixed strategy for Column is a veci@, . .., yn), such thay; > 0, andz’j‘:lyj =1.

Suppose that, in the Clinton-Dole game, Row decides to playrtixed strategy.5,.5). What should Column
do? The answer is easy: If tlkgs are given, there is pure strategy(that is, a mixed strategy with a}{’s zero except
for one) that is optimal. It is found by comparing thenumbersy ", Gjjx;, for j =1,...,n (in the Clinton-Dole
game, Column would compar® with 0, and of course choose the smallest —remember, thiegmenote what
Column pays). That idf Column knew Row’s mixed strategy, s’he would end up payirmgstinallest among the
n outcomesy ", Gjjx;, for j = 1,...,n. On the other hand, Row will seek the mixed strategy thakimizes this
minimum;that is,

mxaxmjiniiGim.

This maximum would be the best possilgiearanteeabout an expected outcome that Row can have by choosing a

mixed strategy. Let us call this guaranteevhat Row is trying to do is solve the following LP:

maxz
V4 —-3X1 +2% <0
z +X1 —X <0

X1 —+Xo ; 1
Symmetrically, it is easy to see that Column would solve tiWing LP:

minw
w —3yp 4y >0
w42y -y, >0
yi +y2 =1

The crucial observation now is thttese LP’s are dual to each othemd hence have the same optimum, call.it

Lecture 17 17-10

Let us summarize: By solving an LP, Row can guarantee an &egh@ecome of at leadt, and by solving the
dual LP, Column can guarantee an expected loss of at mostie &lue. It follows that this is the uniquely defined
optimal play (it was not priori certain that such a play existdy.is calledthe value of the gamdn this case, the

optimum mixed strategy for Row i8/7,4/7), and for Column(2/7,5/7), with a value of 17 for the Row player.

The existence of mixed strategies that are optimal for btathgrs and achieve the same value is a fundamental

result in Game Theory calldthe min-max theorenit can be written in equations as follows:
mexmyianiijij = myinmf\xz xY;Gij.
It is surprising, because the left-hand side, in which Caluwptimizes last, and therefore has presumably an ad-

vantage, should be intuitively smaller than the right-haiut, in which Column decides first. Duality equalizes the

two, as it does in max-flow min-cut.

Circuit Evaluation

We have seen many interesting and diverse applicationa@didiprogramming. In some sense, the next one is
theultimateapplication. Suppose that we are giveB@olean circuit that is, a DAG of gates, each of which is either
an input gate (indegree zero, and has a value T or F), or an @Rigdegree two), or an AND gate (indegree two),
or a NOT gate (indegree one). One of them is designated asuthatagate. We wish to tell if this circuit evaluates

(following the laws of Boolean values bottom-up) to T. ThEkhown aghe circuit value problem.

There is a very simple and automatic way of translating theudivalue problem into an LP: for each gaje
we have a variablgy. For all gates we have@ xy < 1. If gis a T input gate, we have the equatign=1; if itis F,
Xg = 0. Ifitis an OR gate, say of the gatesandlY, then we have the inequality < x,+xy. If it is an AND gate
of handl, we have the inequalitieg, < xn, X3 < X (notice the difference). For a NOT gate we sgy= 1 — X.
Finally, we want to max,, whereo is the output gate. It is easy to see that the optimum valug will be 1 if the

circuit value if T,and O if it is F.

This is a rather straight-forward reduction to LP, from algemn that may not seem very interesting or hard at
first. However, the circuit value problem is in some sensentiest general problem solvable in polynomial time!
Here is a justification of this statement: after all, a polyra time algorithm runs on a computer, and the computer
is ultimately a Boolean combinational circuit implementada chip. Since the algorithm runs in polynomial time,
it can be rendered as a circuit consisting of polynomiallyngnsuperpositions of the computer’s circuit. Hence, the

fact that circuit value problem reduces to LP means dtigiolynomially solvable problems do!

In our next topic Complexity and NP-completenesge shall see that a class that contains many hard problems

Lecture 17 17-11

/
(g

/ k-
@ I
CECERT

\

@ @

Figure 17.5: A Boolean circuit

reduces, much the same wayjiteger programming

