
CS124 Lecture 17

Network Flows

Suppose that we are given the network in top of Figure 17.1, where the numbers indicate capacities, that is, the

amount of flow that can go through the edge in unit time. We wishto find the maximum amount of flow that can go

through this network, fromSto T.

This problem can also be reduced to linear programming. We have a nonnegative variable for each edge, rep-

resenting the flow through this edge. These variables are denoted fSA, fSB, . . . We have two kinds of constraints:

capacity constraints such asfSA≤ 5 (a total of 9 such constraints, one for each edge), and flow conservation con-

straints (one for each node exceptSandT), such asfAD + fBD = fDC + fDT (a total of 4 such constraints). We wish

to maximize fSA+ fSB, the amount of flow that leavesS, subject to these constraints. It is easy to see that this linear

program is equivalent to the max-flow problem. The simplex method would correctly solve it.

In the case of max-flow, it is very instructive to “simulate” the simplex method, to see what effect its various

iterations would have on the given network. Simplex would start with the all-zero flow, and would try to improve it.

How can it find a small improvement in the flow? Answer: it finds apath fromS to T (say, by depth-first search),

and moves flow along this path of total value equal to theminimumcapacity of an edge on the path (it can obviously

do no better). This is the first iteration of simplex (see Figure 17.1).

How would simplex continue? It would look for another path from S to T. Since this time we already partially

(or totally) use some of the edges, we should do depth-first search on the edges that have someresidual capacity,

above and beyond the flow they already carry. Thus, the edgeCT would be ignored, as if it were not there. The

depth-first search would now find the pathS−A−D−T, and augment the flow by two more units, as shown in

Figure 17.1.

Next, simplex would again try to find a path fromS to T. The path is nowS−A−B−D−T (the edgesC−T

andA−D are full are are therefore ignored), and we augment the flow asshown in the bottom of Figure 17.1.

Next simplex would again try to find a path. But since edgesA−D, C−T, andS−B are full, they must be

ignored, and therefore depth-first search would fail to find apath, after marking the nodesS,A,C as reachable from

S. Simplex then returns the flow shown, of value 6, as maximum.

How can we be sure that it is the maximum? Notice that these reachable nodes define acut (a set of nodes

17-1



Lecture 17 17-2

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

2

2
2

4
2

2

2

2

4
2

2

2

4
2

2

minimum cut,
capacity 6

Figure 17.1: Max flow



Lecture 17 17-3

containingSbut notT), and thecapacityof this cut (the sum of the capacities of the edges going out ofthis set) is

6, the same as the max-flow value. (It must be the same, since this flow passes through this cut.) The existence of

this cut establishes that the flow is optimum!

There is a complication that we have swept under the rug so far: when we do depth-first search looking for a

path, we use not only the edges that are not completely full, but we must also traversein the opposite directionall

edges that already have some non-zero flow. This would have the effect of canceling some flow; canceling may be

necessary to achieve optimality, see Figure 17.2. In this figure the only way to augment the current flow is via the

pathS−B−A−T, which traverses the edgeA−B in the reverse direction (a legal traversal, sinceA−B is carrying

non-zero flow).

1 1

1

1 1

S

A

B

T

Figure 17.2: Flows may have to be canceled

In general, a path from the source to the sink along which we can increase the flow is called anaugmenting

path. We can look for an augmenting path by doing for example a depth first search along theresidual network,

which we now describe. For an edge(u,v), let c(u,v) be its capacity, and letf (u,v) be the flow across the edge.

Note that we adopt the following convention: if 4 units flow fromu to v, then f (u,v) = 4, and f (v,u) = −4. That is,

we interpret the fact that we could reverse the flow across an edge as being equivalent to a “negative flow”. Then the

residual capacityof an edge(u,v) is just

c(u,v)− f (u,v).

The residual network has the same vertices as the original graph; the edges of the residual network consist of all

weighted edges with strictly positive residual capacity. The idea is then if we find a path from the source to the sink

in the residual network, we have an augmenting path to increase the flow in the original network. As an exercise,

you may want to consider the residual network at each step in Figure 17.1.



Lecture 17 17-4

Suppose we look for a path in the residual network using depthfirst search. In the case where the capacities

are integers, we will always be able to push an integral amount of flow along an augmenting path. Hence, if the

maximum flow is f ∗, the total time to find the maximum flow isO(E f∗), since we may have to do anO(E) depth

first search up tof ∗ times. This is not so great.

Note that we do not have to do a depth-first search to find an augmenting path in the residual network. In fact,

using a breadth-first search each time yields an algorithm that provably runs inO(VE2) time, regardless of whether

or not the capacities are integers. We will not prove this here. There are also other algorithms and approaches to the

max-flow problem as well that improve on this running time.

To summarize: the max-flow problem can be easily reduced to linear programming and solved by simplex. But

it is easier to understand what simplex would do by followingits iterations directly on the network. It repeatedly

finds a path fromSto T along edges that are not yet full (have non-zero residual capacity), and also along any reverse

edges with non-zero flow. If anS−T path is found, we augment the flow along this path, and repeat.When a path

cannot be found, the set of nodes reachable fromSdefines a cut of capacity equal to the max-flow. Thus,the value

of the maximum flow is always equal to the capacity of the minimum cut. This is the importantmax-flow min-cut

theorem. One direction (that max-flow≤min-cut) is easy (think about it:anycut is larger thananyflow); the other

direction is proved by the algorithm just described.

Duality

As it turns out, the max-flow min-cut theorem is a special caseof a more general phenomenon calledduality.

Basically, duality means that for each maximization problem there is a corresponding minimizations problem with

the property that any feasible solution of the min problem isgreater than or equal any feasible solution of the max

problem. Furthermore, and more importantly,they have the same optimum.

Consider the network shown in Figure 17.3, and the corresponding max-flow problem. We know that it can be

written as a linear program as follows:



Lecture 17 17-5

3 1

1

2 3

S

A

B

T

Figure 17.3: A simple max-flow problem

max fSA + fSB

fSA ≤ 3
fSB ≤ 2

fAB ≤ 1
fAT ≤ 1

fBT ≤ 3
fSA − fAB − fAT = 0

fSA + fAB − fBT = 0
f ≥ 0

P

Consider now the following linear program:

min 3ySA +2ySB +yAB +yAT +3yBT

ySA +uA ≥ 1
ySB +uB ≥ 1

yAB −uA +uB ≥ 0
yAT −uA ≥ 0

yBT −uB ≥ 0
y≥ 0

D

This LP describes the min-cut problem! To see why, suppose that theuA variable is meant to be 1 ifA is in the

cut with S, and 0 otherwise, and similarly forB (naturally, by the definition of a cut,Swill always be withS in the

cut, andT will never be withS). Each of they variables is to be 1 if the corresponding edge contributes tothe cut

capacity, and 0 otherwise. Then the constraints make sure that these variables behave exactly as they should. For

example, the second constraint states thatif A is not with S, then SA must be added to the cut.The third one states

thatif A is with S and B is not(this is the only case in which the sum−uA+uB becomes−1), then AB must contribute



Lecture 17 17-6

to the cut.And so on. Although they andu’s are free to take values larger than one, they will be “slammed” by the

minimization down to 1 or 0.

Let us now make a remarkable observation: these two programshave strikingly symmetric,dual, structure.

This structure is most easily seen by putting the linear programs in matrix form. The first program, which we call

the primal (P), we write as:

max 1 1 0 0 0

1 0 0 0 0 ≤ 3

0 1 0 0 0 ≤ 2

0 0 1 0 0 ≤ 1

0 0 0 1 0 ≤ 1

0 0 0 0 1 ≤ 3

1 0 −1 −1 1 = 0

0 1 1 0 −1 = 0

≥ ≥ ≥ ≥ ≥

Here we have removed the actual variable names, and we have included an additional row at the bottom denoting

that all the variables are non-negative. (An unrestricted variable will be denoted by unr.

The second program, which we call the dual (D), we write as:

min 3 2 1 1 3 0 0

1 0 0 0 0 1 0 ≥ 1

0 1 0 0 0 0 1 ≥ 1

0 0 1 0 0 −1 1 ≥ 0

0 0 0 1 0 −1 0 ≥ 0

0 0 0 0 1 0 −1 ≥ 0

≥ ≥ ≥ ≥ ≥ unr unr

Each variable ofP corresponds to a constraint ofD, and vice-versa. Equality constraints correspond to unre-

stricted variables (theu’s), and inequality constraints to restricted variables. Minimization becomes maximization.

The matrices are transpose of one another, and the roles of right-hand side and objective function are interchanged.

Such LP’s are calleddual to each other. It is mechanical, given an LP, to form its dual.Suppose we start with

a maximization problem. Change all inequality constraintsinto ≤ constraints, negating both sides of an equation if

necessary. Then



Lecture 17 17-7

• transpose the coefficient matrix

• invert maximization to minimization

• interchange the roles of the right-hand side and the objective function

• introduce a nonnegative variable for each inequality, and an unrestricted one for each equality

• for each nonnegative variable introduce a≥ constraint, and for each unrestricted variable introduce an equality

constraint.

If we start with a minimization problem, we instead begin by turning all inequality constraints into≥ con-

straints, we make the dual a maximization, and we change the last step so that each nonnegative variable corresponds

to a≤ constraint. Note that it is easy to show from this description that the dual of the dual is the original primal

problem!

By the max-flow min-cut theorem, the two LP’sP andD above have the same optimum.In fact, this is true

for general dual LP’s!This is theduality theorem, which can be stated as follows (we shall not prove it; the best

proof comes from the simplex algorithm, very much as the max-flow min-cut theorem comes from the max-flow

algorithm):

If an LP has a bounded optimum, then so does its dual, and the two optimal values coincide.

Matching

It is often useful tocomposereductions. That is, we can reduce a problem A to B, and B to C, and since C we

know how to solve, we end up solving A. A good example is the matching problem.

Suppose that thebipartite graph shown in Figure 17.4 records the compatibility relation between four boys and

four girls. We seek a maximum matching, that is, a set of edgesthat is as large as possible, and in which no two

edges share a node. For example, in Figure 17.4 there is acompletematching (a matching that involves all nodes).

To reduce this problem to max-flow, we create a new source and anew sink, connect the source with all boys

and all girls with the sinks, and direct all edges of the original bipartite graph from the boys to the girls. All edges

have capacity one. It is easy to see that the maximum flow in this network corresponds to the maximum matching.

Well, the situation is slightly more complicated than was stated above: what is easy to see is that the optimum

integer-valuedflow corresponds to the optimum matching. We would be at a lossinterpreting as a matching a flow



Lecture 17 17-8

S T

Al

Bob

Charlie

Dave

Eve

Fay

Grace

Helen

Figure 17.4: Reduction from matching to max-flow (all capacities are 1)

that ships .7 units along the edge Al-Eve! Fortunately, whatthe algorithm in the previous section establishes is thatif

the capacities are integers, then the maximum flow is integer. This is because we only deal with integers throughout

the algorithm. Henceintegrality comes for free in the max-flow problem.

Unfortunately, max-flow is about the only problem for which integrality comes for free. It is a very difficult

problem to find the optimum solution (oranysolution) of a general linear program with the additional constraint that

(some or all of) the variables be integers. We will see why in forthcoming lectures.

Games

We can represent various situations of conflict in life in terms ofmatrix games. For example, the game shown

below is therock-paper-scissorsgame. The Row player chooses a row strategy, the Column player chooses a column

strategy, and then Column pays to Row the value at the intersection (if it is negative, Row ends up paying Column).











r p s

r 0 −1 1

p 1 0 −1

s −1 1 0











Games do not necessarily have to be symmetric (that is, Row and Column have the same strategies, or, in terms of



Lecture 17 17-9

matrices,A = −AT). For example, in the following fictitiousClinton-Dolegame the strategies may be the issues on

which a candidate for office may focus (the initials stand for“economy,” “society,” “morality,” and “tax-cut”) and

the entries are the number of voters lost by Column.





m t

e 3 −1

s −2 1





We want to explore how the two players may play “optimally” these games. It is not clear what this means. For

example, in the first game there is no such thing as an optimal “pure” strategy (it very much depends on what your

opponent does; similarly in the second game). But suppose that you play this game repeatedly. Then it makes sense

to randomize. That is, consider a game given by anm× n matrix Gi j ; define amixed strategyfor the row player

to be a vector(x1, . . . ,xm), such thatxi ≥ 0, and∑m
i=1 xi = 1. Intuitively, xi is the probability with which Row plays

strategyi. Similarly, a mixed strategy for Column is a vector(y1, . . . ,yn), such thaty j ≥ 0, and∑n
j=1 y j = 1.

Suppose that, in the Clinton-Dole game, Row decides to play the mixed strategy(.5, .5). What should Column

do? The answer is easy: If thexi ’s are given, there is apure strategy(that is, a mixed strategy with ally j ’s zero except

for one) that is optimal. It is found by comparing then numbers∑m
i=1 Gi j xi , for j = 1, . . . ,n (in the Clinton-Dole

game, Column would compare.5 with 0, and of course choose the smallest —remember, the entries denote what

Column pays). That is,if Column knew Row’s mixed strategy, s/he would end up paying the smallest among the

n outcomes∑m
i=1Gi j xi , for j = 1, . . . ,n. On the other hand, Row will seek the mixed strategy thatmaximizes this

minimum;that is,

max
x

min
j

m

∑
i=1

Gi j xi .

This maximum would be the best possibleguaranteeabout an expected outcome that Row can have by choosing a

mixed strategy. Let us call this guaranteez; what Row is trying to do is solve the following LP:

maxz
z −3x1 +2x2 ≤ 0
z +x1 −x2 ≤ 0

x1 +x2 = 1

Symmetrically, it is easy to see that Column would solve the following LP:

minw
w −3y1 +y2 ≥ 0
w +2y1 −y2 ≥ 0

y1 +y2 = 1

The crucial observation now is thatthese LP’s are dual to each other, and hence have the same optimum, call itV.



Lecture 17 17-10

Let us summarize: By solving an LP, Row can guarantee an expected income of at leastV, and by solving the

dual LP, Column can guarantee an expected loss of at most the same value. It follows that this is the uniquely defined

optimal play (it was nota priori certain that such a play exists).V is calledthe value of the game. In this case, the

optimum mixed strategy for Row is(3/7,4/7), and for Column(2/7,5/7), with a value of 1/7 for the Row player.

The existence of mixed strategies that are optimal for both players and achieve the same value is a fundamental

result in Game Theory calledthe min-max theorem. It can be written in equations as follows:

max
x

min
y ∑xiy jGi j = min

y
max

x ∑xiy jGi j .

It is surprising, because the left-hand side, in which Column optimizes last, and therefore has presumably an ad-

vantage, should be intuitively smaller than the right-handside, in which Column decides first. Duality equalizes the

two, as it does in max-flow min-cut.

Circuit Evaluation

We have seen many interesting and diverse applications of linear programming. In some sense, the next one is

theultimateapplication. Suppose that we are given aBoolean circuit, that is, a DAG of gates, each of which is either

an input gate (indegree zero, and has a value T or F), or an OR gate (indegree two), or an AND gate (indegree two),

or a NOT gate (indegree one). One of them is designated as the output gate. We wish to tell if this circuit evaluates

(following the laws of Boolean values bottom-up) to T. This is known asthe circuit value problem.

There is a very simple and automatic way of translating the circuit value problem into an LP: for each gateg

we have a variablexg. For all gates we have 0≤ xg ≤ 1. If g is a T input gate, we have the equationxg = 1; if it is F,

xg = 0. If it is an OR gate, say of the gatesh andh′, then we have the inequalityxg ≤ xh +xh′ . If it is an AND gate

of h andh′, we have the inequalitiesxg ≤ xh, xg ≤ xh′ (notice the difference). For a NOT gate we sayxg = 1− xh.

Finally, we want to maxxo, whereo is the output gate. It is easy to see that the optimum value ofxo will be 1 if the

circuit value if T, and 0 if it is F.

This is a rather straight-forward reduction to LP, from a problem that may not seem very interesting or hard at

first. However, the circuit value problem is in some sense themost general problem solvable in polynomial time!

Here is a justification of this statement: after all, a polynomial time algorithm runs on a computer, and the computer

is ultimately a Boolean combinational circuit implementedon a chip. Since the algorithm runs in polynomial time,

it can be rendered as a circuit consisting of polynomially many superpositions of the computer’s circuit. Hence, the

fact that circuit value problem reduces to LP means thatall polynomially solvable problems do!

In our next topic,Complexity and NP-completeness, we shall see that a class that contains many hard problems



Lecture 17 17-11

T F F T

AND

NOT

AND

OR

AND

ANDOR

Figure 17.5: A Boolean circuit

reduces, much the same way, tointeger programming.


