CS124 Lecture 16

An introductory example

Suppose that a company that produces three products wisklesitle the level of production of each so as to
maximize profits. Lek; be the amount of Product 1 produced in a morghthat of Product 2, angs that of Product
3. Each unit of Product 1 yields a profit of 100, each unit ofdei 2 a profit of 600, and each unit of Product 3 a
profit of 1400. There are limitations o, Xp, andxsz (besides the obvious one, thatx,, X3 > 0). First,x; cannot
be more than 200, ang cannot be more than 300, presumably because of supply fiomta Also, the sum of the
three must be, because of labor constraints, at most 40@ll¥iit turns out that Products 2 and 3 use the same
piece of equipment, with Product 3 using three times as mammthhence we have another constragnt 3x; < 600.

What are the best levels of production?

We represent the situation bylinear program as follows:

max 10, + 60Qx, + 1400¢3

X1 200

IN

X2 300

IN

IN

X1+ Xo + X3 400

Xo + 3X3 600

IN

v
o

X1,X2,X3

The set of alfeasiblesolutions of this linear program (that is, all vectors in 3gihce that satisfy all constraints)

is precisely the polyhedron shown in Figure 16.1.

We wish to maximize the linear function 100+ 60k, + 1400¢3 over all points of this polyhedron. Geometri-
cally, the linear equation 189+ 600x; + 140z = c can be represented by a plane parallel to the one determined
by the equation 104 + 600, + 1400« = 0. This means that we want to find the plane of this type thatties the
polyhedron and is as far towards the positive orthant asilplesObviously, the optimum solution will be a vertex
(or the optimum solution will not be unique, but a vertex ve). Of course, two other possibilities with linear

programming are that (a) the optimum solution may be infiraty(b) that there may be no feasible solution at all.

16-1

Lecture 16 16-2

300

opt

>
200 X1

200
X3

Figure 16.1: The feasible region

For this problem, an optimal solution exists, and moreovershall show that it is easy to find.

Linear programs

Linear programs, in general, have the following form: thisranobjective functiorthat one seeks to optimize,
along withconstraintson the variables. The objective function and the conssaing alllinear in the variables; that
is, all equations have no powers of the variables, nor arevdniables multiplied together. As we shall see, many
problems can be represented by linear programs, and for prabjems it is an extremely convenient representation.
So once we explain how to solve linear programs, the quetiiem becomes how to reduce other problems to linear

programming (LP).

There are polynomial time algorithms for solving linear gm@ms. In practice, however, such problems are

solved by thesimplex methodevised by George Dantzig in 1947. The simplex method dtants a vertex (in this

Lecture 16 16-3

case the vertex0,0,0)) and repeatedly looks for a vertex that is adjacent, and tsriobjective value. That is, it
is a kind ofhill-climbing in the vertices of the polytope. When a vertex is found thatrim@abetter neighbor, simplex
stops and declares this vertex to be the optimum. For exanmptke figure one of the possible paths followed by
simplex is shown. No known variant of the simplex algorithas tbeen proven to take polynomial time, and most of
the variations used in practice have been shown to take expi@htime on some examples. Fortunately, in practice,
bad cases rarely arise, and the simplex algorithm runsreglsequickly. There are now implementations of simplex

that solve routinely linear programs withany thousandsf variables and constraints.

Of course, given a linear program, it is possible either aathe optimum solution may be infinity, or (b) that

there may be no feasible solution at all. If this is the cdse simplex algorithm will discover it.

Reductions between ver sions of simplex

A general linear programming problem may involve constsitihat are equalities or inequalities in either
direction. Its variables may be nonnegative, or could beestnicted in sign. And we may be either minimizing
or maximizing a linear function. It turns out that we can Basianslate any such version to any other. One
such translation that is particularly useful is from the geh form to the one required by simplerinimization,

nonnegative variables, and equality constraints.

To turn an inequalityy ax < binto an equality constraint, we introduce a new variatfhe slack variablefor
this inequality), and rewrite this inequality &sa;x; +s=b,s> 0. Similarly, any inequalityy a;x; > b is rewritten

asy ax; —s=Db,s> 0; sis now called asurplusvariable.

We handle an unrestricted variabteas follows: we introduce two nonnegative variabl&s, and x—, and
replacex by x* —x~ everywhere. The idea is that we bet= X" — x~, where we may restrict botki” andx™ to be

nonnegative. This way can take on any value, but there are only nonnegative vagabl

Finally, to turn a maximization problem into a minimizatione, we just multiply the objective function byl.

A production scheduling example

We have the demand estimates for our product for all monthk96f7,d; : i = 1,...,12, and they are very
uneven, ranging from 440 to 920. We currently have 30 empgsyeach of which produce 20 units of the product
each month at a salary of 2,000; we have no stock of the protiost can we handle such fluctuations in demand?

Three ways:

Lecture 16 16-4

e overtime —but this is expensive since it costs 80% more tlegular production, and has limitations, as

workers can only work 30% overtime.

¢ hire and fire workers —but hiring costs 320, and firing cost8.40

e store the surplus production —but this costs 8 per item peattino

This rather involved problem can be formulated and solved lagear program. As in all such reductions, the

crucial first step is defining the variables:

Let wg be the number of workers we have title month —we havevg = 30.

Let x; be the production for month

0; is the number of items produced by overtime in mointh

h; and f; are the number of workers hired/fired in the beginning of rhant

s is the amount of product stored after the end of manth
We now must write the constraints:

e X; = 20w; + 0; —the amount produced is the one produced by regular pramugtius overtime.
e W, =w_1+h— fi,w; > 0 —the changing number of workers.

e 5§ =5_1+X —d >0—the amount stored in the end of this month is what we stavittq plus the production,

minus the demand.

e 0 < 6w; —only 30% overtime.

Finally, what is the objective function? Itis
min 20002 w; + 4002 fi + 3202 hi + 82 S + 1802 0,

where the summations are fram= 1 to 12.

A Communication Network Problem

Lecture 16 16-5

We have a network whose lines have the bandwidth shown in&itfi2. We wish to establish three calls: one
between A and B (call 1), one between B and C (call 2), and otvedam A and C (call 3). We must give each call
at least 2 units of bandwidth, but possibly more. The linkrfré to B pays 3 per unit of bandwidth, from B to C
pays 2, and from A to C pays 4. Notice that each call can be dantevo ways (the long and the short path), or by a
combination (for example, two units of bandwidth via thersloute, and three via the long route). Suppose we are
a shady network administrator, and our goals is to maximigenetwork’s income (rather than minimize the overall

cost). How do we route these calls to maximize the networicsine?

BO
10

13 6

C A

Figure 16.2: A communication network

This is also a linear program. We have variables for eacharalleach path (long or short); for exampieis
the short path for call 1, anx, the long path for call 2. We demand that (1) no edge bandwgléx¢eeded, and (2)

each call gets a bandwidth of 2.

max 3 + 3% + 2% + 2%, + 4X3 + 45

X1+ X| + Xo -+ X5 10

IA

X1+ X) + X3+ X5 12

IN

IN
™

X2+ X+ X3+ X3

X1+ Xo + X3

IN
o

Lecture 16 16-6

X +X+Xx; < 13
Xp+X+x < 11
Xi+x, > 2
Xo+X, > 2
X3+Xg > 2
X1,%...,X > 0

The solution, obtained via simplex in a few millisecondsthis following: x; = 0,X; = 7,% = X, = 1.5,X3 =

5,X; = 4.5.

Question: Suppose that we removed the constraints stdtatgetich call should receive at least two units.

Would the optimum change?

Approximate Separ ation

An interesting last application: Suppose that we have tw® spoints in the plane, thislack points(x;,y;) :
i=1,...,mand thewhite points(x;,y;) :i =m+1,...,m+n. We wish to separate them by a straight léne- by = c,
so that for all black pointax+ by < ¢, and for all white pointsax+ by > c¢. In general, this would be impossible.
Still, we may want to separate them by a line that minimizessiim of the “displacement errors” (distance from the

boundary) over all misclassified points. Here is the LP tlchieves this:

mine, +&+...+en+emi1t...+6Emnmn

€ > ax +by, —c¢
€ > ax+by, —c
€m > a%n+bym—C
€mnil = C— @Xm1— bymia
€min > C— a%ntn — DYmtn
>0

Network Flows

Suppose that we are given the network in top of Figure 16.&revthe numbers indicate capacities, that is, the
amount of flow that can go through the edge in unit time. We wastind the maximum amount of flow that can go

through this network, fronsto T.

16-7

Lecture 16

minimum cut,

5 ,capacity 6

T

Figure 16.3: Max flow

Lecture 16 16-8

This problem can also be reduced to linear programming. We hanonnegative variable for each edge, rep-
resenting the flow through this edge. These variables aretdeérisy, fsg,... We have two kinds of constraints:
capacity constraints such disa < 5 (a total of 9 such constraints, one for each edge), and flowargation con-
straints (one for each node exc&andT), such asfap + fgp = foc + fp7 (a total of 4 such constraints). We wish
to maximizefsa+ fsg, the amount of flow that leaves subject to these constraints. It is easy to see that thaarin

program is equivalent to the max-flow problem. The simplexhoé would correctly solve it.

In the case of max-flow, it is very instructive to “simulatédietsimplex method, to see what effect its various
iterations would have on the given network. Simplex wousdtstith the all-zero flow, and would try to improve it.
How can it find a small improvement in the flow? Answer: it findgaah fromSto T (say, by depth-first search),
and moves flow along this path of total value equal torttieimumcapacity of an edge on the path (it can obviously

do no better). This is the first iteration of simplex (see Fegl6.3).

How would simplex continue? It would look for another patbrifrSto T. Since this time we already partially
(or totally) use some of the edges, we should do depth-fiesitheon the edges that have sorasidual capacity
above and beyond the flow they already carry. Thus, the €dgeould be ignored, as if it were not there. The
depth-first search would now find the pa&dh- A— D — T, and augment the flow by two more units, as shown in

Figure 16.3.

Next, simplex would again try to find a path froto T. The path is nowv6— A—B—D —T (the edge€ — T

andA — D are full are are therefore ignored), and we augment the floshan in the bottom of Figure 16.3.

Next simplex would again try to find a path. But since edgesD, C— T, andS— B are full, they must be
ignored, and therefore depth-first search would fail to finghth, after marking the nod&A, C as reachable from

S. Simplex then returns the flow shown, of value 6, as maximum.

How can we be sure that it is the maximum? Notice that thesehedde nodes define @t (a set of nodes
containingSbut notT), and thecapacityof this cut (the sum of the capacities of the edges going othisfset) is
6, the same as the max-flow value. (It must be the same, siicldiv passes through this cut.) The existence of

this cut establishes that the flow is optimum!

There is a complication that we have swept under the rug somaen we do depth-first search looking for a
path, we use not only the edges that are not completely fullywe must also traversa the opposite directiomll
edges that already have some non-zero flow. This would haveftbct of canceling some flow; canceling may be
necessary to achieve optimality, see Figure 16.4. In thigdighe only way to augment the current flow is via the

pathS—B— A—T, which traverses the edge— B in the reverse direction (a legal traversal, sirice B is carrying

Lecture 16 16-9

non-zero flow).

Figure 16.4: Flows may have to be canceled

In general, a path from the source to the sink along which weilerease the flow is called aaugmenting
path We can look for an augmenting path by doing for example ardépt search along theesidual network
which we now describe. For an ed@e V), let c(u,v) be its capacity, and let(u,v) be the flow across the edge.
Note that we adopt the following convention: if 4 units flowrnu to v, thenf(u,v) = 4, andf (v,u) = —4. That s,
we interpret the fact that we could reverse the flow acrosgige as being equivalent to a “negative flow”. Then the
residual capacityof an edggu, V) is just

c(u,v) — f(u,v).

The residual network has the same vertices as the origimghgrthe edges of the residual network consist of all
weighted edges with strictly positive residual capacitigeTdea is then if we find a path from the source to the sink
in the residual network, we have an augmenting path to iserélae flow in the original network. As an exercise,

you may want to consider the residual network at each stefiré 16.3.

Suppose we look for a path in the residual network using déphsearch. In the case where the capacities
are integers, we will always be able to push an integral amoftifiow along an augmenting path. Hence, if the
maximum flow isf*, the total time to find the maximum flow 3(E f*), since we may have to do &(E) depth

first search up td* times. This is not so great.

Note that we do not have to do a depth-first search to find an antyng path in the residual network. In fact,
using a breadth-first search each time yields an algoritrahgiovably runs irO(V E?) time, regardless of whether

or not the capacities are integers. We will not prove thigh@here are also other algorithms and approaches to the

Lecture 16 16-10

max-flow problem as well that improve on this running time.

To summarize: the max-flow problem can be easily reduceahéaliprogramming and solved by simplex. But
it is easier to understand what simplex would do by followitsgiterations directly on the network. It repeatedly
finds a path fronBto T along edges that are not yet full (have non-zero residualaity), and also along any reverse
edges with non-zero flow. If aB— T path is found, we augment the flow along this path, and rep&htn a path
cannot be found, the set of nodes reachable f&uaefines a cut of capacity equal to the max-flow. Thhs,value
of the maximum flow is always equal to the capacity of the mimirout This is the importantnax-flow min-cut
theorem One direction (that max-flowmin-cut) is easy (think about iany cut is larger tharany flow); the other

direction is proved by the algorithm just described.

