
CS124 Lecture 16

An introductory example

Suppose that a company that produces three products wishes to decide the level of production of each so as to

maximize profits. Letx1 be the amount of Product 1 produced in a month,x2 that of Product 2, andx3 that of Product

3. Each unit of Product 1 yields a profit of 100, each unit of Product 2 a profit of 600, and each unit of Product 3 a

profit of 1400. There are limitations onx1, x2, andx3 (besides the obvious one, thatx1,x2,x3 ≥ 0). First,x1 cannot

be more than 200, andx2 cannot be more than 300, presumably because of supply limitations. Also, the sum of the

three must be, because of labor constraints, at most 400. Finally, it turns out that Products 2 and 3 use the same

piece of equipment, with Product 3 using three times as much,and hence we have another constraintx2+3x3 ≤ 600.

What are the best levels of production?

We represent the situation by alinear program, as follows:

max100x1 +600x2 +1400x3

x1 ≤ 200

x2 ≤ 300

x1 +x2 +x3 ≤ 400

x2 +3x3 ≤ 600

x1,x2,x3 ≥ 0

The set of allfeasiblesolutions of this linear program (that is, all vectors in 3-dspace that satisfy all constraints)

is precisely the polyhedron shown in Figure 16.1.

We wish to maximize the linear function 100x1 +600x2 +1400x3 over all points of this polyhedron. Geometri-

cally, the linear equation 100x1 + 600x2 + 1400x3 = c can be represented by a plane parallel to the one determined

by the equation 100x1 +600x2 +1400x3 = 0. This means that we want to find the plane of this type that touches the

polyhedron and is as far towards the positive orthant as possible. Obviously, the optimum solution will be a vertex

(or the optimum solution will not be unique, but a vertex willdo). Of course, two other possibilities with linear

programming are that (a) the optimum solution may be infinity, or (b) that there may be no feasible solution at all.

16-1



Lecture 16 16-2

x1

x2

x3

200

300

200

opt

Figure 16.1: The feasible region

For this problem, an optimal solution exists, and moreover we shall show that it is easy to find.

Linear programs

Linear programs, in general, have the following form: thereis anobjective functionthat one seeks to optimize,

along withconstraintson the variables. The objective function and the constraints are alllinear in the variables; that

is, all equations have no powers of the variables, nor are thevariables multiplied together. As we shall see, many

problems can be represented by linear programs, and for manyproblems it is an extremely convenient representation.

So once we explain how to solve linear programs, the questionthen becomes how to reduce other problems to linear

programming (LP).

There are polynomial time algorithms for solving linear programs. In practice, however, such problems are

solved by thesimplex methoddevised by George Dantzig in 1947. The simplex method startsfrom a vertex (in this



Lecture 16 16-3

case the vertex(0,0,0)) and repeatedly looks for a vertex that is adjacent, and has better objective value. That is, it

is a kind ofhill-climbing in the vertices of the polytope. When a vertex is found that has no better neighbor, simplex

stops and declares this vertex to be the optimum. For example, in the figure one of the possible paths followed by

simplex is shown. No known variant of the simplex algorithm has been proven to take polynomial time, and most of

the variations used in practice have been shown to take exponential time on some examples. Fortunately, in practice,

bad cases rarely arise, and the simplex algorithm runs extremely quickly. There are now implementations of simplex

that solve routinely linear programs withmany thousandsof variables and constraints.

Of course, given a linear program, it is possible either that(a) the optimum solution may be infinity, or (b) that

there may be no feasible solution at all. If this is the case, the simplex algorithm will discover it.

Reductions between versions of simplex

A general linear programming problem may involve constraints that are equalities or inequalities in either

direction. Its variables may be nonnegative, or could be unrestricted in sign. And we may be either minimizing

or maximizing a linear function. It turns out that we can easily translate any such version to any other. One

such translation that is particularly useful is from the general form to the one required by simplex:minimization,

nonnegative variables, and equality constraints.

To turn an inequality∑aixi ≤ b into an equality constraint, we introduce a new variables (theslack variablefor

this inequality), and rewrite this inequality as∑aixi + s= b,s≥ 0. Similarly, any inequality∑aixi ≥ b is rewritten

as∑aixi −s= b,s≥ 0; s is now called asurplusvariable.

We handle an unrestricted variablex as follows: we introduce two nonnegative variables,x+ and x−, and

replacex by x+ − x− everywhere. The idea is that we letx = x+ − x−, where we may restrict bothx+ andx− to be

nonnegative. This way,x can take on any value, but there are only nonnegative variables.

Finally, to turn a maximization problem into a minimizationone, we just multiply the objective function by−1.

A production scheduling example

We have the demand estimates for our product for all months of1997, di : i = 1, . . . ,12, and they are very

uneven, ranging from 440 to 920. We currently have 30 employees, each of which produce 20 units of the product

each month at a salary of 2,000; we have no stock of the product. How can we handle such fluctuations in demand?

Three ways:



Lecture 16 16-4

• overtime —but this is expensive since it costs 80% more than regular production, and has limitations, as

workers can only work 30% overtime.

• hire and fire workers —but hiring costs 320, and firing costs 400.

• store the surplus production —but this costs 8 per item per month

This rather involved problem can be formulated and solved asa linear program. As in all such reductions, the

crucial first step is defining the variables:

• Let w0 be the number of workers we have theith month —we havew0 = 30.

• Let xi be the production for monthi.

• oi is the number of items produced by overtime in monthi.

• hi and fi are the number of workers hired/fired in the beginning of month i.

• si is the amount of product stored after the end of monthi.

We now must write the constraints:

• xi = 20wi +oi —the amount produced is the one produced by regular production, plus overtime.

• wi = wi−1+hi − fi,wi ≥ 0 —the changing number of workers.

• si = si−1+xi −di ≥ 0 —the amount stored in the end of this month is what we startedwith, plus the production,

minus the demand.

• oi ≤ 6wi —only 30% overtime.

Finally, what is the objective function? It is

min 2000∑wi +400∑ fi +320∑hi +8∑si +180∑oi ,

where the summations are fromi = 1 to 12.

A Communication Network Problem



Lecture 16 16-5

We have a network whose lines have the bandwidth shown in Figure 16.2. We wish to establish three calls: one

between A and B (call 1), one between B and C (call 2), and one between A and C (call 3). We must give each call

at least 2 units of bandwidth, but possibly more. The link from A to B pays 3 per unit of bandwidth, from B to C

pays 2, and from A to C pays 4. Notice that each call can be routed in two ways (the long and the short path), or by a

combination (for example, two units of bandwidth via the short route, and three via the long route). Suppose we are

a shady network administrator, and our goals is to maximize the network’s income (rather than minimize the overall

cost). How do we route these calls to maximize the network’s income?

11

13 6

12

10

8

B

AC

Figure 16.2: A communication network

This is also a linear program. We have variables for each calland each path (long or short); for examplex1 is

the short path for call 1, andx′2 the long path for call 2. We demand that (1) no edge bandwidth is exceeded, and (2)

each call gets a bandwidth of 2.

max 3x1 +3x′1 +2x2 +2x′2 +4x3 +4x′3

x1 +x′1+x2 +x′2 ≤ 10

x1 +x′1+x3 +x′3 ≤ 12

x2 +x′2+x3 +x′3 ≤ 8

x1 +x′2 +x′3 ≤ 6



Lecture 16 16-6

x′1 +x2 +x′3 ≤ 13

x′1 +x′2 +x3 ≤ 11

x1 +x′1 ≥ 2

x2 +x′2 ≥ 2

x3 +x′3 ≥ 2

x1,x
′
1 . . . ,x′3 ≥ 0

The solution, obtained via simplex in a few milliseconds, isthe following: x1 = 0,x′1 = 7,x2 = x′2 = 1.5,x3 =

.5,x′3 = 4.5.

Question: Suppose that we removed the constraints stating that each call should receive at least two units.

Would the optimum change?

Approximate Separation

An interesting last application: Suppose that we have two sets of points in the plane, theblack points(xi ,yi) :

i = 1, . . . ,mand thewhite points(xi ,yi) : i = m+1, . . . ,m+n. We wish to separate them by a straight lineax+by= c,

so that for all black pointsax+ by≤ c, and for all white pointsax+ by≥ c. In general, this would be impossible.

Still, we may want to separate them by a line that minimizes the sum of the “displacement errors” (distance from the

boundary) over all misclassified points. Here is the LP that achieves this:

mine1 +e2 + . . .+em+em+1+ . . .+em+n

e1 ≥ ax1 +by1−c
e2 ≥ ax2 +by2−c

...
em ≥ axm+bym−c

em+1 ≥ c−axm+1−bym+1
...

em+n ≥ c−axm+n−bym+n

ei ≥ 0

Network Flows

Suppose that we are given the network in top of Figure 16.3, where the numbers indicate capacities, that is, the

amount of flow that can go through the edge in unit time. We wishto find the maximum amount of flow that can go

through this network, fromSto T.



Lecture 16 16-7

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

5

3

2

1 1
2

2

3

5

S

A C

B D

T

2

2
2

4
2

2

2

2

4
2

2

2

4
2

2

minimum cut,
capacity 6

Figure 16.3: Max flow



Lecture 16 16-8

This problem can also be reduced to linear programming. We have a nonnegative variable for each edge, rep-

resenting the flow through this edge. These variables are denoted fSA, fSB, . . . We have two kinds of constraints:

capacity constraints such asfSA≤ 5 (a total of 9 such constraints, one for each edge), and flow conservation con-

straints (one for each node exceptSandT), such asfAD + fBD = fDC + fDT (a total of 4 such constraints). We wish

to maximize fSA+ fSB, the amount of flow that leavesS, subject to these constraints. It is easy to see that this linear

program is equivalent to the max-flow problem. The simplex method would correctly solve it.

In the case of max-flow, it is very instructive to “simulate” the simplex method, to see what effect its various

iterations would have on the given network. Simplex would start with the all-zero flow, and would try to improve it.

How can it find a small improvement in the flow? Answer: it finds apath fromS to T (say, by depth-first search),

and moves flow along this path of total value equal to theminimumcapacity of an edge on the path (it can obviously

do no better). This is the first iteration of simplex (see Figure 16.3).

How would simplex continue? It would look for another path from S to T. Since this time we already partially

(or totally) use some of the edges, we should do depth-first search on the edges that have someresidual capacity,

above and beyond the flow they already carry. Thus, the edgeCT would be ignored, as if it were not there. The

depth-first search would now find the pathS−A−D−T, and augment the flow by two more units, as shown in

Figure 16.3.

Next, simplex would again try to find a path fromS to T. The path is nowS−A−B−D−T (the edgesC−T

andA−D are full are are therefore ignored), and we augment the flow asshown in the bottom of Figure 16.3.

Next simplex would again try to find a path. But since edgesA−D, C−T, andS−B are full, they must be

ignored, and therefore depth-first search would fail to find apath, after marking the nodesS,A,C as reachable from

S. Simplex then returns the flow shown, of value 6, as maximum.

How can we be sure that it is the maximum? Notice that these reachable nodes define acut (a set of nodes

containingSbut notT), and thecapacityof this cut (the sum of the capacities of the edges going out ofthis set) is

6, the same as the max-flow value. (It must be the same, since this flow passes through this cut.) The existence of

this cut establishes that the flow is optimum!

There is a complication that we have swept under the rug so far: when we do depth-first search looking for a

path, we use not only the edges that are not completely full, but we must also traversein the opposite directionall

edges that already have some non-zero flow. This would have the effect of canceling some flow; canceling may be

necessary to achieve optimality, see Figure 16.4. In this figure the only way to augment the current flow is via the

pathS−B−A−T, which traverses the edgeA−B in the reverse direction (a legal traversal, sinceA−B is carrying



Lecture 16 16-9

non-zero flow).

1 1

1

1 1

S

A

B

T

Figure 16.4: Flows may have to be canceled

In general, a path from the source to the sink along which we can increase the flow is called anaugmenting

path. We can look for an augmenting path by doing for example a depth first search along theresidual network,

which we now describe. For an edge(u,v), let c(u,v) be its capacity, and letf (u,v) be the flow across the edge.

Note that we adopt the following convention: if 4 units flow fromu to v, then f (u,v) = 4, and f (v,u) = −4. That is,

we interpret the fact that we could reverse the flow across an edge as being equivalent to a “negative flow”. Then the

residual capacityof an edge(u,v) is just

c(u,v)− f (u,v).

The residual network has the same vertices as the original graph; the edges of the residual network consist of all

weighted edges with strictly positive residual capacity. The idea is then if we find a path from the source to the sink

in the residual network, we have an augmenting path to increase the flow in the original network. As an exercise,

you may want to consider the residual network at each step in Figure 16.3.

Suppose we look for a path in the residual network using depthfirst search. In the case where the capacities

are integers, we will always be able to push an integral amount of flow along an augmenting path. Hence, if the

maximum flow is f ∗, the total time to find the maximum flow isO(E f∗), since we may have to do anO(E) depth

first search up tof ∗ times. This is not so great.

Note that we do not have to do a depth-first search to find an augmenting path in the residual network. In fact,

using a breadth-first search each time yields an algorithm that provably runs inO(VE2) time, regardless of whether

or not the capacities are integers. We will not prove this here. There are also other algorithms and approaches to the



Lecture 16 16-10

max-flow problem as well that improve on this running time.

To summarize: the max-flow problem can be easily reduced to linear programming and solved by simplex. But

it is easier to understand what simplex would do by followingits iterations directly on the network. It repeatedly

finds a path fromSto T along edges that are not yet full (have non-zero residual capacity), and also along any reverse

edges with non-zero flow. If anS−T path is found, we augment the flow along this path, and repeat.When a path

cannot be found, the set of nodes reachable fromSdefines a cut of capacity equal to the max-flow. Thus,the value

of the maximum flow is always equal to the capacity of the minimum cut. This is the importantmax-flow min-cut

theorem. One direction (that max-flow≤min-cut) is easy (think about it:anycut is larger thananyflow); the other

direction is proved by the algorithm just described.


