CS124 Lecture 13

Hopefully the ideas we saw in our hashing problems have coed you that randomness is a useful tool in
the design and analysis of algorithms. Just to make sure, Weamsider several more example of how to use
randomness to design algorithms.

13.1 Primality testing

A great deal of modern cryptography is based on the fact #abfing is apparently hard. At least nobody has
published a fast way to factor yet. (It is rumored the NSA kadwow to factor, and is keeping it a secret. Some
of you might well have worked or will work for the NSA, at whighoint you will be required to keep this secret.
Shame on you.) Of course, certain numbers are easy to factwnbers with small prime factors, for example. So
often, for cryptographic purposes, we may want to generatg harge prime numbers and multiply them together.
How can we find large prime numbers?

We are fortunate to find that prime numbers are pretty denkat i, there’s an awful lot of them. Letx) be
the number of primes less than or equakidhen

or more exactly,

This means that on average about one out of evexynlrmbers is prime, if we are looking for primes about the size
of x. So if we want to find prime numbers of say 250 digits, we wouddéhto check about In 28 ~ 576 numbers
on average before finding a prime. (We can search smarterthomwing out multiples of 2,3,5, etc. in order to
check fewer numbers.) Hence, all we need is a good methagdtomg if a number is prime. With such a test, we
can generate large primes easily— just keep generatingmatalge numbers, and test them for primality until we
find a suitable prime number.

How can we test if a number is prime? The pedantic way is to try dividing by all smaller numbers.
Alternatively, we can try to dividen by all primes up to,/n. Of course, both of these approaches are quite slow;
whennis about 180, the value of,/nis still huge! The point is that 8% has only 250 (or more general@(logn))
digits, so we'd like the running time of the algorithm to besbe on the size 250, not 30!

How can we quickly test if a number is prime? Let’s start bykiog at some ways that work pretty well, but
have a few problems. We will use the following result from rogntheory:

Theorem 13.1 If pisaprimeand 1 < a< p, then

a1 =1 modp.

Proof: There are two nice proofs for this fact. One uses a simpledtolu to prove the equivalent statement
thataP = a mod p. This is clearly true whea = 1. Now

(a+1)P = in; <|IO> aP~,

13-1



Lecture 13 13-2

The coefficient(?) is divisible byp, unless = 0 ori = p. Hence
(a+1)P=aP+1modp=a+1 modp,
where the last step follows by the induction hypothesis.

An alternative proof uses the following idea. Consider thenbers 12,...,p— 1. Multiply them all bya, so
now we havea, 2a,...,(p— 1)a. Each of these number is distinct mpdand there argp— 1 such numbers, so in
fact the sequenca, 2a,...,(p—1)ais the same as the sequenc@,l.., p— 1 when considered modulo, except
for the order. Hence

1-2-...-(p-1)=a-2a-...-(p—L)amodp=aPt.1-2-...-(p—1) modp.
Thus we haveP~! = 1 modp. n

This immediately suggests one way to check if a nunmbisrprime. Compute 2 modn. If it is not 1, then
nis certainly not prime! Note that we can compute 2modn quite efficiently, using our previously discussed
methods for exponentiation, which require o@ylogn) multiplications! Thus this test is efficient.

But so far this test is just one-way; rifis composite, we may have that2 = 1 modn, so we cannot assume
thatn is prime just because it passes the test. For examiflé=21 mod 341, and 341 is not prime. Such a number
is called a2-pseudoprime, and unfortunately there are infinitely many of them. (Of risay even though there are
infinitely many 2-pseudoprimes, they are not as dense asimeg- that is, there are relatively very few of them.
So if we generate a large numberandomly, and see if21 = 1 modn, we will most likely be right if we then say
nis prime if it passes this test. In practice, this might bedyenough! This is not a good primality test, however, if
an NSA official you know gives you a number to test for primalénd you think they might be trying to fool you.
The NSA might be purposely giving you a 2-pseudoprime. Tlayle tricky that way.)

You might think to try a different base, other than 2. For epdanyou might choose 3, or a random value of
a. Unfortunately, there are infinitely many 3-pseudoprimiesfact, there are infinitely many composite numbers
such thae"! = 1 modn for all athat do not share a factor with (That is, for alla such that the greatest common
divisor ofaandnis 1.) Such are calledCarmichael numbers— the smallest such number is 561. So a test based on
this approach is destined to fail for some numbers.

There is a way around this problem, due to Rabin. etl = 2'u. Suppose we choose a random basand
computea* by first computingg" and then repeatedly squaring. Along the way, we will chede®for the values
a’,a?. ... whether they have the following property:

a® £ +1 modn,a®! = 1 modn.

That is, suppose we find on-trivial square root of 1 modulon. It turns out that only composite numbers have
non-trivial square roots — prime numbers don't. In fact, & ehoose randomly, andh is composite, for at least/a

of the values of, one of two things will happen: we will either find a non-talisquare root of 1 using this process,
or we will find thata"* # 1 modn. In either case, we know thatis composite!

A value of a for which eithera"! # 1 modn or the computation 0&"~! yields a non-trivial square root is
called awitness to the compositeness af We have said that/3 of the possible values afare witnesses (we will
not prove this here!). So if we pick a single valueaofandomly, andh is composite, we will determine thatis
composite with probability at least 3/4. How can we imprdwe probability of catching whenis composite?

The simplest way is just to repeat the test several times) ##@e choosing a value @f randomly. (Note that
we do not even have to go to the trouble of making sure we tfgraiit values o& each time; we can choose values
with replacement!) Each time we try this we have a probabditat least 34 of catching thah is composite, so if



Lecture 13 13-3

we try the tesk times, we will return the wrong answer in the case wheisscomposite with probability1/4)¥. For
k = 25, the probability of the algorithm itself making an erreithus(1/2)°°; the probability that a random cosmic
ray affected your arithmetic unit is probably higher!

This trick comes up again and again with randomized algmsthlf the probability of catching an error on a
single trial isp, the probability of failing to catch an error aftetrials is (1— p)t, assuming each trial is independent.
By makingt sufficiently large, the probability of error can be reduc&ince the probability shrinks exponentially
int, few trials can produce a great deal of security in the answer



