
CS124 Lecture 13

Hopefully the ideas we saw in our hashing problems have convinced you that randomness is a useful tool in
the design and analysis of algorithms. Just to make sure, we will consider several more example of how to use
randomness to design algorithms.

13.1 Primality testing

A great deal of modern cryptography is based on the fact that factoring is apparently hard. At least nobody has
published a fast way to factor yet. (It is rumored the NSA knows how to factor, and is keeping it a secret. Some
of you might well have worked or will work for the NSA, at whichpoint you will be required to keep this secret.
Shame on you.) Of course, certain numbers are easy to factor–numbers with small prime factors, for example. So
often, for cryptographic purposes, we may want to generate very large prime numbers and multiply them together.
How can we find large prime numbers?

We are fortunate to find that prime numbers are pretty dense. That is, there’s an awful lot of them. Letπ(x) be
the number of primes less than or equal tox. Then

π(x) ≈ x
lnx

,

or more exactly,

lim
x→∞

π(x)
x

lnx

= 1.

This means that on average about one out of every lnx numbers is prime, if we are looking for primes about the size
of x. So if we want to find prime numbers of say 250 digits, we would have to check about ln10250≈ 576 numbers
on average before finding a prime. (We can search smarter, too, throwing out multiples of 2,3,5, etc. in order to
check fewer numbers.) Hence, all we need is a good method fortesting if a number is prime. With such a test, we
can generate large primes easily– just keep generating random large numbers, and test them for primality until we
find a suitable prime number.

How can we test if a numbern is prime? The pedantic way is to try dividingn by all smaller numbers.
Alternatively, we can try to dividen by all primes up to

√
n. Of course, both of these approaches are quite slow;

whenn is about 10250, the value of
√

n is still huge! The point is that 10250 has only 250 (or more generallyO(logn))
digits, so we’d like the running time of the algorithm to be based on the size 250, not 10250!

How can we quickly test if a number is prime? Let’s start by looking at some ways that work pretty well, but
have a few problems. We will use the following result from number theory:

Theorem 13.1 If p is a prime and 1≤ a < p, then

ap−1 = 1 mod p.

Proof: There are two nice proofs for this fact. One uses a simple induction to prove the equivalent statement
thatap = a mod p. This is clearly true whena = 1. Now

(a+1)p =
p

∑
i=0

(

p
i

)

ap−i.

13-1



Lecture 13 13-2

The coefficient
(p

i

)

is divisible byp, unlessi = 0 or i = p. Hence

(a+1)p = ap +1 mod p = a+1 modp,

where the last step follows by the induction hypothesis.

An alternative proof uses the following idea. Consider the numbers 1,2, . . . , p−1. Multiply them all bya, so
now we havea,2a, . . . ,(p−1)a. Each of these number is distinct modp, and there arep−1 such numbers, so in
fact the sequencea,2a, . . . ,(p−1)a is the same as the sequence 1,2, . . . , p−1 when considered modulop, except
for the order. Hence

1·2· . . . · (p−1) = a ·2a · . . . · (p−1)a mod p = ap−1 ·1·2· . . . · (p−1) mod p.

Thus we haveap−1 = 1 mod p.

This immediately suggests one way to check if a numbern is prime. Compute 2n−1 modn. If it is not 1, then
n is certainly not prime! Note that we can compute 2n−1 modn quite efficiently, using our previously discussed
methods for exponentiation, which require onlyO(logn) multiplications! Thus this test is efficient.

But so far this test is just one-way; ifn is composite, we may have that 2n−1 = 1 modn, so we cannot assume
thatn is prime just because it passes the test. For example, 2340 = 1 mod 341, and 341 is not prime. Such a number
is called a2-pseudoprime, and unfortunately there are infinitely many of them. (Of course, even though there are
infinitely many 2-pseudoprimes, they are not as dense as the primes– that is, there are relatively very few of them.
So if we generate a large numbern randomly, and see if 2n−1 = 1 modn, we will most likely be right if we then say
n is prime if it passes this test. In practice, this might be good enough! This is not a good primality test, however, if
an NSA official you know gives you a number to test for primality, and you think they might be trying to fool you.
The NSA might be purposely giving you a 2-pseudoprime. They can be tricky that way.)

You might think to try a different base, other than 2. For example, you might choose 3, or a random value of
a. Unfortunately, there are infinitely many 3-pseudoprimes.In fact, there are infinitely many composite numbersn
such thatan−1 = 1 modn for all a that do not share a factor withn. (That is, for alla such that the greatest common
divisor of a andn is 1.) Suchn are calledCarmichael numbers– the smallest such number is 561. So a test based on
this approach is destined to fail for some numbers.

There is a way around this problem, due to Rabin. Letn−1 = 2tu. Suppose we choose a random basea and
computean−1 by first computingau and then repeatedly squaring. Along the way, we will check tosee for the values
au,a2u, . . . whether they have the following property:

a2i−1u 6= ±1 modn,a2iu = 1 modn.

That is, suppose we find anon-trivial square root of 1 modulon. It turns out that only composite numbers have
non-trivial square roots – prime numbers don’t. In fact, if we choosea randomly, andn is composite, for at least 3/4
of the values ofa, one of two things will happen: we will either find a non-trivial square root of 1 using this process,
or we will find thatan−1 6= 1 modn. In either case, we know thatn is composite!

A value of a for which eitheran−1 6= 1 modn or the computation ofan−1 yields a non-trivial square root is
called awitness to the compositeness ofn. We have said that 3/4 of the possible values ofa are witnesses (we will
not prove this here!). So if we pick a single value ofa randomly, andn is composite, we will determine thatn is
composite with probability at least 3/4. How can we improve the probability of catching whenn is composite?

The simplest way is just to repeat the test several times, each time choosing a value ofa randomly. (Note that
we do not even have to go to the trouble of making sure we try different values ofa each time; we can choose values
with replacement!) Each time we try this we have a probability of at least 3/4 of catching thatn is composite, so if



Lecture 13 13-3

we try the testk times, we will return the wrong answer in the case wheren is composite with probability(1/4)k. For
k = 25, the probability of the algorithm itself making an error is thus(1/2)50; the probability that a random cosmic
ray affected your arithmetic unit is probably higher!

This trick comes up again and again with randomized algorithms. If the probability of catching an error on a
single trial isp, the probability of failing to catch an error aftert trials is(1− p)t , assuming each trial is independent.
By makingt sufficiently large, the probability of error can be reduced.Since the probability shrinks exponentially
in t, few trials can produce a great deal of security in the answer.


