CS124 Lecture 12

12.1 Near duplicate documentst

Suppose we are designing a major search engine. We wouldolikgoid answering user queries with multiple
copies of the same page. That is, there may be several patiesxaictly the same text. These duplicates occur
for a variety of reasons. Some are mirror sites, some areesagicommon pages (such as Unix man pages), some
are multiple spam advertisements, etc. Returning just drikeoduplicates should be sufficient for the end user;
returning all of them will clutter the response page, wastialuable real estate and frustraing the user. How can we
cope with duplicate pages?

Determining exact duplicates has a simple solution, baseldaghing. Use the text of each page and an ap-
propriate hash function to hash the text into a 64 bit sigeatuf two documents have the same signature, it is
reasonable to assume that they share the same text. (Whydfteows this assumption wrong? Is it a terrible thing
if the assumption turns out to be false?) By comparing sigeaton the fly, we can avoid returning duplicates.

This solution works extremely well if we want to catch exaapticates. What if, however, we want to capture
the idea of “near duplicate” documents,somilar documents. For example, consider two mirror sites on the.Web
It may be that the documents share the same text, excepthhastt corresponding to the links on the page are
different, with each referring to the correct mirror site.this case, the two pages will not yield the same signature,
although again, we would not want to return both pages to titeuser, because they are so similar. As another
example, consider two copies of a newspaper article, orfeayiroper copyright notice added, and one without. We
do not need to return both pages to the user. Again, hashindgatument appears to be of no help. Finally, consider
the case of advertisers who submit slightly modified versiohtheir ads over and over again, trying to get more or
better spots on the response pages sent back to users. Wiostop their nefarious plans!

We will describe a scheme used to detect similar documefitseetly, using a hashing based scheme. Like the
Bloom filter solution for password dictionaries, our sabutiis highly efficient in terms of space and time. The cost
for this efficiency is accuracy; our algorithm will sometimmake mistakes, because it uses randomness.

12.2 Set resemblance

We describe a more general problem that will relate to ouudwent similarity problem.

Consider two sets of number&,andB. For concreteness, we will assume tlBaand B are subsets of 64 bit
numbers. We may define thesemblance of A andB as

resemblanc@, B) = R(A,B) = ;23 E;

The resemblance is a real number between 0 and 1. Intuitiredyresemblance accurately captures how close
the two sets are. Sets and documents will be related, as Wweesilater.

IThis lecture is based on the work of Andrei Broder, who depetbthese ideas, and convinced Altavista to use them! (T¢undefeat
may have been even more difficult than the first.)

12-1

Lecture 12 12-2

How quickly can we determine the resemblance of two setdtelgets are each of simgthe natural approach
(compare each element to Mto each element iB) is O(n?). We can do better by sorting the sets. Still, these
approaches are all rather slow, when we consider that wehaié many sets to deal with and hence many pairs of
sets to consider.

Instead we should ocnsider relaxing the problem. Suppastewth do not need an exact calculation of the
resemblanc&(A, B). A reasonable estimate or approximation of the resembladitsuffice. Also, since we will
be answering a variety of queries over a long period of timenakes sense to consider algorithms that first do
a preprocessing phase, in order to handle the queries much more quickly. ®hatve will first do some work,
preparing the appropriate data structures and data in aquegsing phase. The advantage of doing all this work in
advance will be that queries regarding resemblance canbeuickly answered.

Our estimation process will require a black box that doeselewing: it produces an effectiveandom per-
mutation on the set of 64 bit numbers. What do we mean by a random petion2a_et us consider just the case of
four bit number, of which there are 16. Suppose we write earhber on a card. Generating a random permutation
is like shuffling this deck of 16 cards and looking at the oraewhich the numbers appear after this shuffling. For
example, if we find the number 0011 on the first card, then otmptation maps the number 3 to the number 1. We
write this asm(3) = 1, whererttis a function that represents the permutation.

Suppose we have an efficient implemenation of random petionga which we think of as a black box proce-
dure. That is, when we invoke the black box procedsig¢1, x) on a 64 bit numbex, we get outy = 14 (x) for some
fixed, completely random permutation. Similarly, if we invoke the black boBB(2,x), we get outp(x) for some
different random permutatiorp. (In fact in practice we cannot achieve this black box, butcae get close enough
that it is useful to think in these terms for analysis.)

Let us use the notatior; (A) to denote the set of elements obtained by compuBiB(lL, x) for everyx in A.
Consider the following procedure: we compute thergéf) andm (B), and record theninimum of each set. When
does mifmy (A) } = min{my (B)}? This happens only when there is some elemaatisfyingr (x) = min{my (A)} =
min{my(B)}. In other words, the elemertthat is the minimum element in the skt B has to be the intersection of
the setsANB.

If T4 is a random permutation, then every elemenfinB has equal probability of mapping to the minimum
element after the permutation is applies. That is, foxahdy in AUB,

Prm (x) = min{ty (AUB) }| = Pr[mu(y) = min{ru(AUB)}].

Thus, for the minimum of (A) andy (B) to be the same, the minimum element must ligttAN B) (see Fig-

ure 12.1). Hence
_ |ANB|

Prmin{my(A)} = min{ty(B)}] = AUB|

But this is just the resemblané¥A, B)!

This gives us a way to estimate the resemblance. Insteadiafjtjust one permutation, we take many— say
100. For each se, we preprocess by computing njim; (A)} for j = 1 to 100, and store these values. To estimate
the resemblance of two setsandB, we count how often the minima are the same, and divide by L@9like each
permutation gives us a coin flip, where the probability of adee(a match) is exactly the resembla®tA, B) of the
two sets.

Lecture 12 12-3

AB

Figure 12.1: If the minimum element of (A) andTy (B) are the same, the minimum element must lie(ANB).

Four score and seven years ago, our four
Four score and seven
score and seven years
and seven years ago
seven years ago our
years ago our foundi

Figure 12.2: Shingling: the document is broken up into ajinsents ofk consecutive words; each segment leads to
a 64 bit hash value.

12.3 Turning Document Similarity into a Set Resemblance Problem

We now return to the original application. How do we turn do&nt similarity into a set resemblance problem? The
key idea is to hash pieces of the document— say every fouecatige words— into 64 bit numbers. This process has
been calledshingling, and each set of consecutive words is calletliagle. (See Figure 12.2.) Using hashing, the
shingles give rise to the resulting numbers for the set rétmmae problem, so that for each documBnthere is a
setSy. There are many possible variations and improvements lgesstor example, one could modify the number
of bits in a shingle or the method for shingling. Similarlyyeocould throw out all shingles that are not 0 mod 16,
say, in order to reduce the number of shingles per document.

This approach obscures some important information in theuehent— such as the order paragraphs appear
in, say. However, it seems reasonable to say that if thetmegudets have high resemblance, the documents are
reasonably similar.

Once we have the shingles for the document, we associateuang@otsketch with each document. The sketch
of a documeng; is a list of say 100 numbergmin{ () },min{m(Sp) }, min{ts(SH)}, ..., min{Tueo(S)}).

Now we choose a threshold— for example, we might say that tweoighents are the similar if 90 out of the 100
entries in the sketch match. Now whenever a user queriegtrelsengine, we check the sketches of the documents
we wish to return. If two sketches share 90 entries, we ontyg sme of them. (Alternatively, we could catch the
duplicates on the crawling side— we check all the documeswgeacraw! the Web, and whenever two sketches share
more than 90 entries, we assume the associated documesimdag, so that we only need to store one of them!)

Recall that our scheme uses random permutations. So, if waissketch threshold to 90 out of 100 entries,

Lecture 12 12-4

this does not guarantee that any pair of documents with leglmblance are caught. Also, some pairs of documents
that do not have high resemblance may get marked as havihgésgmblance. How well does this scheme do?

We analyze how well the scheme does with the following argumEor each permutatiors, the probability
that two documenté andB have the same value in thih position of the sketch is just the resemblance of the two
documentR(A,B) =r. (Here the resembland® A, B) of course refers to the resemblance of the sets of numbers
obtained by shingling\ andB.) Hence, the probability(r) that at least 90 out of the 100 entries in the sketch match

IS

What doesp(r) look like as a function of? The graph is shown in Figure 12.3. Notice tipét) stays very
small untilr approaches.9, and then quickly grows towards 1. This is exactly the prigpe&e want our scheme to
have- if two documents are not similar, we will rarely migakem for being similar, and if they are similar, we are
likely to catch them!

For example, even if the resemblance i8,0nve will only get 90 matches with probability less tha9@5!
When the resemblance is only5Q the probability of having 90 entries in the sketch matdis f@ almost 1018! If
documents are not alike, we will rarely mistake them as bsinlar.

If documents are alike, we will most likely catch them. If tliesemblance is.05, the documents will have 90
or more entries in common in the sketch with probability geeéhan.988; if the resemblance is®B, the probability
jumps to over997.

We are dealing with a very large number of dcouments— mosts&amgines currently index twenty-five to over
one hundred million Web pages! So even though the probaloifimaking a mistake is small, it will happen. The
worst that happens, though, is that the search engine faitglex a few pages that it should, and it fails to catch a
few duplicates that it should. These problems are not a kady de

Lecture 12 12-5

1 -
0.9 1
0.8 1
0.7 1
0.6 1
0.5
0.4 1
0.3 7
0.2 1
0.1+

O I I I I I I I I I 1
0O 01 02 03 04 05 06 07 08 09 1

Probability of 90 or more matches

Resemblance

Figure 12.3: Making the threshold for document similari@/dut of 100 matches in the sketch leads to the following
graph relating resemblance to the probability two documemé considered similar. Notice the sharp change in
behavior near where the resemblance.800 Essentially, the procedure behaves like a low pass filter

