
CS124 Lecture 12

12.1 Near duplicate documents1

Suppose we are designing a major search engine. We would liketo avoid answering user queries with multiple
copies of the same page. That is, there may be several pages with exactly the same text. These duplicates occur
for a variety of reasons. Some are mirror sites, some are copies of common pages (such as Unix man pages), some
are multiple spam advertisements, etc. Returning just one of the duplicates should be sufficient for the end user;
returning all of them will clutter the response page, wasting valuable real estate and frustraing the user. How can we
cope with duplicate pages?

Determining exact duplicates has a simple solution, based on hashing. Use the text of each page and an ap-
propriate hash function to hash the text into a 64 bit signature. If two documents have the same signature, it is
reasonable to assume that they share the same text. (Why? Howoften is this assumption wrong? Is it a terrible thing
if the assumption turns out to be false?) By comparing signatures on the fly, we can avoid returning duplicates.

This solution works extremely well if we want to catch exact duplicates. What if, however, we want to capture
the idea of “near duplicate” documents, orsimilar documents. For example, consider two mirror sites on the Web.
It may be that the documents share the same text, except that the text corresponding to the links on the page are
different, with each referring to the correct mirror site. In this case, the two pages will not yield the same signature,
although again, we would not want to return both pages to the end user, because they are so similar. As another
example, consider two copies of a newspaper article, one with a proper copyright notice added, and one without. We
do not need to return both pages to the user. Again, hashing the document appears to be of no help. Finally, consider
the case of advertisers who submit slightly modified versions of their ads over and over again, trying to get more or
better spots on the response pages sent back to users. We wantto stop their nefarious plans!

We will describe a scheme used to detect similar documents efficiently, using a hashing based scheme. Like the
Bloom filter solution for password dictionaries, our solution is highly efficient in terms of space and time. The cost
for this efficiency is accuracy; our algorithm will sometimes make mistakes, because it uses randomness.

12.2 Set resemblance

We describe a more general problem that will relate to our document similarity problem.

Consider two sets of numbers,A andB. For concreteness, we will assume thatA andB are subsets of 64 bit
numbers. We may define theresemblance of A andB as

resemblance(A,B) = R(A,B) =
|A∩B|
|A∪B|

.

The resemblance is a real number between 0 and 1. Intuitively, the resemblance accurately captures how close
the two sets are. Sets and documents will be related, as we will see later.

1This lecture is based on the work of Andrei Broder, who developed these ideas, and convinced Altavista to use them! (The second feat
may have been even more difficult than the first.)

12-1

Lecture 12 12-2

How quickly can we determine the resemblance of two sets? If the sets are each of sizen, the natural approach
(compare each element to inA to each element inB) is O(n2). We can do better by sorting the sets. Still, these
approaches are all rather slow, when we consider that we willhave many sets to deal with and hence many pairs of
sets to consider.

Instead we should ocnsider relaxing the problem. Suppose that we do not need an exact calculation of the
resemblanceR(A,B). A reasonable estimate or approximation of the resemblancewill suffice. Also, since we will
be answering a variety of queries over a long period of time, it makes sense to consider algorithms that first do
a preprocessing phase, in order to handle the queries much more quickly. Thatis, we will first do some work,
preparing the appropriate data structures and data in a preprocessing phase. The advantage of doing all this work in
advance will be that queries regarding resemblance can thenbe quickly answered.

Our estimation process will require a black box that does thefollowing: it produces an effectiverandom per-
mutation on the set of 64 bit numbers. What do we mean by a random permutation? Let us consider just the case of
four bit number, of which there are 16. Suppose we write each number on a card. Generating a random permutation
is like shuffling this deck of 16 cards and looking at the orderat which the numbers appear after this shuffling. For
example, if we find the number 0011 on the first card, then our permutation maps the number 3 to the number 1. We
write this asπ(3) = 1, whereπ is a function that represents the permutation.

Suppose we have an efficient implemenation of random permutations, which we think of as a black box proce-
dure. That is, when we invoke the black box procedureBB(1,x) on a 64 bit numberx, we get outy = π1(x) for some
fixed, completely random permutationπ1. Similarly, if we invoke the black boxBB(2,x), we get outπ2(x) for some
different random permutationπ2. (In fact in practice we cannot achieve this black box, but wecan get close enough
that it is useful to think in these terms for analysis.)

Let us use the notationπ1(A) to denote the set of elements obtained by computingBB(1,x) for everyx in A.
Consider the following procedure: we compute the setπ1(A) andπ1(B), and record theminimum of each set. When
does min{π1(A)}= min{π1(B)}? This happens only when there is some elementx satisfyingπ1(x) = min{π1(A)}=
min{π1(B)}. In other words, the elementx that is the minimum element in the setA∪B has to be the intersection of
the setsA∩B.

If π1 is a random permutation, then every element inA∪B has equal probability of mapping to the minimum
element after the permutation is applies. That is, for allx andy in A∪B,

Pr[π1(x) = min{π1(A∪B)}] = Pr[π1(y) = min{π1(A∪B)}].

Thus, for the minimum ofπ1(A) andπ1(B) to be the same, the minimum element must lie inπ1(A∩B) (see Fig-
ure 12.1). Hence

Pr[min{π1(A)} = min{π1(B)}] =
|A∩B|
|A∪B|

.

But this is just the resemblanceR(A,B)!

This gives us a way to estimate the resemblance. Instead of taking just one permutation, we take many– say
100. For each setA, we preprocess by computing min{π j(A)} for j = 1 to 100, and store these values. To estimate
the resemblance of two setsA andB, we count how often the minima are the same, and divide by 100.It is like each
permutation gives us a coin flip, where the probability of a heads (a match) is exactly the resemblanceR(A,B) of the
two sets.

Lecture 12 12-3

A B

BA I

Figure 12.1: If the minimum element ofπ1(A) andπ1(B) are the same, the minimum element must lie inπ1(A∩B).

Four score and seven years ago, our founding
Four score and seven

score and seven years
and seven years ago

seven years ago our
years ago our founding

Figure 12.2: Shingling: the document is broken up into all segments ofk consecutive words; each segment leads to
a 64 bit hash value.

12.3 Turning Document Similarity into a Set Resemblance Problem

We now return to the original application. How do we turn document similarity into a set resemblance problem? The
key idea is to hash pieces of the document– say every four consecutive words– into 64 bit numbers. This process has
been calledshingling, and each set of consecutive words is called ashingle. (See Figure 12.2.) Using hashing, the
shingles give rise to the resulting numbers for the set resemblance problem, so that for each documentD there is a
setSD. There are many possible variations and improvements possible. For example, one could modify the number
of bits in a shingle or the method for shingling. Similarly, one could throw out all shingles that are not 0 mod 16,
say, in order to reduce the number of shingles per document.

This approach obscures some important information in the document– such as the order paragraphs appear
in, say. However, it seems reasonable to say that if the resulting sets have high resemblance, the documents are
reasonably similar.

Once we have the shingles for the document, we associate a documentsketch with each document. The sketch
of a documentSD is a list of say 100 numbers:(min{π1(SD)},min{π2(SD)},min{π3(SD)}, . . . ,min{π100(SD)}).

Now we choose a threshold– for example, we might say that two documents are the similar if 90 out of the 100
entries in the sketch match. Now whenever a user queries the search engine, we check the sketches of the documents
we wish to return. If two sketches share 90 entries, we only send one of them. (Alternatively, we could catch the
duplicates on the crawling side– we check all the documents as we crawl the Web, and whenever two sketches share
more than 90 entries, we assume the associated documents aresimilar, so that we only need to store one of them!)

Recall that our scheme uses random permutations. So, if we set our sketch threshold to 90 out of 100 entries,

Lecture 12 12-4

this does not guarantee that any pair of documents with high resemblance are caught. Also, some pairs of documents
that do not have high resemblance may get marked as having high resemblance. How well does this scheme do?

We analyze how well the scheme does with the following argument. For each permutationπi, the probability
that two documentsA andB have the same value in theith position of the sketch is just the resemblance of the two
documentsR(A,B) = r. (Here the resemblanceR(A,B) of course refers to the resemblance of the sets of numbers
obtained by shinglingA andB.) Hence, the probabilityp(r) that at least 90 out of the 100 entries in the sketch match
is

p(r) =
100

∑
k=90

(

100
k

)

rk(1− r)100−k
.

What doesp(r) look like as a function ofr? The graph is shown in Figure 12.3. Notice thatp(r) stays very
small untilr approaches 0.9, and then quickly grows towards 1. This is exactly the property we want our scheme to
have– if two documents are not similar, we will rarely mistake them for being similar, and if they are similar, we are
likely to catch them!

For example, even if the resemblance is 0.8, we will only get 90 matches with probability less than 0.006!
When the resemblance is only 0.5, the probability of having 90 entries in the sketch match falls to almost 10−18! If
documents are not alike, we will rarely mistake them as beingsimilar.

If documents are alike, we will most likely catch them. If theresemblance is 0.95, the documents will have 90
or more entries in common in the sketch with probability greater than.988; if the resemblance is 0.96, the probability
jumps to over.997.

We are dealing with a very large number of dcouments– most search engines currently index twenty-five to over
one hundred million Web pages! So even though the probability of making a mistake is small, it will happen. The
worst that happens, though, is that the search engine fails to index a few pages that it should, and it fails to catch a
few duplicates that it should. These problems are not a big deal.

Lecture 12 12-5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resemblance

P
ro

b
ab

ili
ty

 o
f

90
 o

r
m

o
re

 m
at

ch
es

Figure 12.3: Making the threshold for document similarity 90 out of 100 matches in the sketch leads to the following
graph relating resemblance to the probability two documents are considered similar. Notice the sharp change in
behavior near where the resemblance is 0.90. Essentially, the procedure behaves like a low pass filter.

