
CS 124 Course Notes 1 Spring 2011

An algorithm is a recipe or a well-defined procedure for performing a calculation, or in general, for transforming

some input into a desired output. Perhaps the most familiar algorithms are those those for adding and multiplying

integers. Here is a multiplication algorithm that is different from the standard algorithm you learned in school: write

the multiplier and multiplicand side by side. Repeat the following operations - divide the first number by 2 (throw

out any fractions) and multiply the second by 2, until the first number is 1. This results in two columns of numbers.

Now cross out all rows in which the first entry is even, and add all entries of the second column that haven’t been

crossed out. The result is the product of the two numbers.

75 29
37 58
18 116
 9 232
 4 464
 2 928
 1 1856
 2175

 29
x 1001011

29
58

232
1856
2175

Figure 1.1: A different multiplication algorithm.

In this course we will ask a number of basic questions about algorithms:

• Does it halt?

The answer for the algorithm given above is clearly yes,provided we are multiplying positive integers. The

reason is that for any integer greater than 1, when we divide it by 2 and throw out the fractional part, we always

get a smaller integer which is greater than or equal to 1. Hence our first number is eventually reduced to 1 and

the process halts.

• Is it correct?

To see that the algorithm correctly computes the product of the integers, observe that if we write a 0 for each

crossed out row, and 1 for each row that is not crossed out, then reading from bottom to top just gives us

the first number in binary. Therefore, the algorithm is just doing standard multiplication, with the multiplier

written in binary.

• Is it fast?

1-1

1-2

It turns out that the above algorithm is about as fast as the standard algorithm you learned in school. Later in

the course, we will study a faster algorithm for multiplyingintegers.

• How much memory does it use?

The memory used by this algorithm is also about the same as that of standard algorithm.

The history of algorithms for simple arithmetic is quite fascinating. Although we take these algorithms for

granted, their widespread use is surprisingly recent. The key to good algorithms for arithmetic was the positional

number system (such as the decimal system). Roman numerals (I, II, III, IV, V, VI, etc) are just the wrong data

structure for performing arithmetic efficiently. The positional number system was first invented by the Mayan

Indians in Central America about 2000 years ago. They used a base 20 system, and it is unknown whether they had

invented algorithms for performing arithmetic, since the Spanish conquerors destroyed most of the Mayan books on

science and astronomy.

The decimal system that we use today was invented in India in roughly 600 AD. This positional number system,

together with algorithms for performing arithmetic, were transmitted to Persia around 750 AD, when several impor-

tant Indian works were translated into Arabic. Around this time the Persian mathematician Al-Khwarizmi wrote his

Arabic textbook on the subject. The word “algorithm” comes from Al-Khwarizmi’s name. Al-Khwarizmi’s work

was translated into Latin around 1200 AD, and the positionalnumber system was propagated throughout Europe

from 1200 to 1600 AD.

The decimal point was not invented until the 10th century AD, by a Syrian mathematician al-Uqlidisi from

Damascus. His work was soon forgotten, and five centuries passed before decimal fractions were re-invented by the

Persian mathematician al-Kashi.

With the invention of computers in this century, the field of algorithms has seen explosive growth. There are a

number of major successes in this field:

• Parsing algorithms - these form the basis of the field of programming languages

• Fast Fourier transform - the field of digital signal processing is built upon this algorithm.

• Linear programming - this algorithm is extensively used in resource scheduling.

• Sorting algorithms - until recently, sorting used up the bulk of computer cycles.

• String matching algorithms - these are extensively used in computational biology.

1-3

• Number theoretic algorithms - these algorithms make it possible to implement cryptosystems such as the RSA

public key cryptosystem.

• Compression algorithms - these algorithms allow us to transmit data more efficiently over, for example, phone

lines.

• Geometric algorithms - displaying images quickly on a screen often makes use of sophisticated algorithmic

techniques.

In designing an algorithm, it is often easier and more productive to think of a computer in abstract terms. Of

course, we must carefully choose at what level of abstraction to think. For example, we could think of computer

operations in terms of a high level computer language such asC or Java, or in terms of an assembly language. We

could dip further down, and think of the computer at the levelAND and NOT gates.

For more on algorithms generally, you can start with the Wikipedia page: http://en.wikipedia.

org/wiki/Algorithm.

For most algorithm design we undertake in this course, it is generally convenient to work at a fairly high level.

We will usually abstract away even the details of the high level programming language, and write our algorithms in

”pseudo-code”, without worrying about implementation details. (Unless, of course, we are dealing with a program-

ming assignment!) Sometimes we have to be careful that we do not abstract away essential features of the problem.

To illustrate this, let us consider a simple but enlightening example.

1.1 Computing the nth Fibonacci number

Remember the famous sequence of numbers invented in the 15thcentury by the Italian mathematician Leonardo

Fibonacci? The sequence is represented asF0,F1,F2 . . ., whereF0 = 0, F1 = 1, and for alln ≥ 2, Fn is defined as

Fn−1+Fn−2. The first few Fibonacci numbers are 0,1,1,2,3,5,8,13,21,34,55, . . . The value ofF30 is greater than a

million! It is easy to see that the Fibonacci numbers grow exponentially. As an exercise, try to show thatFn ≥ 2n/2

for sufficiently largen by a simple induction.

The Wikipedia page for Fibonacci numbers is also full of useful information: http://en.wikipedia.

org/wiki/Fibonacci number.

Here is a simple program to compute Fibonacci numbers that slavishly follows the definition.

1-4

functionF(n: integer): integer

if n = 0 then return 0

else ifn = 1 then return 1

else returnF(n−1)+ F(n−2)

The program is obviously correct. However, it is woefully slow. As it is a recursive algorithm, we can naturally

express its running time on inputn with a recurrence equation. In fact, we will simply count the number of addition

operations the program uses, which we denote byT (n). To develop a recurrence equation, we expressT (n) in terms

of smaller values ofT . We shall see several such recurrence relations in this class.

It is clear thatT (0) = 0 andT (1) = 0. Otherwise, forn ≥ 2, we have

T (n) = T (n−1)+ T(n−2)+1,

because to computerF(n) we computeF(n−1) andF(n−2) and do one other addition besides. This is (almost)

the Fibonacci equation! Hence we can see that the number of addition operations is growing very large; it is at least

2n/2 for n ≥ 4.

Can we do better? This is the question we shall always ask of our algorithms. The trouble with the naive

algorithm the wasteful recursion: the functionF is called with the same argument over and over again, exponentially

many times (try to see how many timesF(1) is called in the computation ofF(5)). A simple trick for improving

performance is to avoid repeated calculations. In this case, this can be easily done by avoiding recursion and just

calculating successive values:

functionF(n: integer): integer arrayA[0. . .n] of integer

A[0] = 0; A[1] = 1

for i = 2 to n do:

A[i] = A[i−1]+ A[i−2]

returnA[n]

This algorithm is of course correct. Now, however, we only don−1 additions.

It seems that we have come so far, from exponential to polynomially many operations, that we can stop here.

But in the back of our heads, we should be wonderingan we do even better? Surprisingly, we can. We rewrite our

equations in matrix notation. Then




F1

F2



=





0 1

1 1



 ·





F0

F1



 .

1-5

Similarly,




F2

F3



=





0 1

1 1



 ·





F1

F2



=





0 1

1 1





2

·





F0

F1



 ,

and in general, Similarly,




Fn

Fn+1



=





0 1

1 1





n

·





F0

F1



 .

So, in order to computeFn, it suffices to raise this 2 by 2 matrix to thenth power. Each matrix multiplication

takes 12 arithmetic operations, so the question boils down to the following: how many multiplications does it take

to raise a base (matrix, number, anything) to the nth power? The answer isO(logn). To see why, consider the case

wheren > 1 is a power of 2. To raiseX to thenth power, we computeXn/2 and then square it. Hence the number of

multiplicationsT (n) satisfies

T (n) = T (n/2)+1,

from which we findT (n) = logn. As an exercise, consider what you have to do whenn is not a power of 2.

(Hint: consider the connection with the multiplication algorithm of the first section; there too we repeatedly halved

a number...)

So we have reduced the computation time exponentially again, from n− 1 arithmetic operations toO(logn),

a great achievement. Well, not really. We got a little too abstract in our model. In our accounting of the time

requirements for all three methods, we have made a grave and common error: we have been too liberal about what

constitutes an elementary step. In general, we often assumethat each arithmetic step takes unit time, because the

numbers involved will be typically small enough that we can reasonably expect them to fit within a computer’s

word. Remember, the numbern is only logn bits in length. But in the present case, we are doing arithmetic on huge

numbers, with aboutn bits, wheren is pretty large. When dealing with such huge numbers, if exact computation

is required we have to use sophisticated long integer packages. Such algorithms takeO(n) time to add twon-bit

numbers. Hence the complexity of the first two methods was larger than we actually thought: not reallyO(Fn) and

O(n), but insteadO(nFn) andO(n2), respectively. The second algorithm is still exponentially faster. What is worse,

the third algorithm involves multiplications ofO(n)-bit integers. LetM(n) be the time required to multiply twon-bit

numbers. Then the running time of the third algorithm is in fact O(M(n)).

The comparison between the running times of the second and third algorithms boils down to a most important

and ancient issue:can we multiply two n-bit integers faster than Ω(n2) ? This would be faster than the method we

learn in elementary school or the clever halving method explained in the opening of these notes.

1-6

As a final consideration, we might consider the mathematicians’ solution to computing the Fibonacci numbers.

A mathematician would quickly determine that

Fn =
1
√

5

[(

1+
√

5
2

)n

−

(

1−
√

5
2

)n]

.

Using this, how many operations does it take to computeFn? Note that this calculation would require floating point

arithmetic. Whether in practice that would lead to a faster or slower algorithm than one using just integer arithmetic

might depend on the computer system on which you run the algorithm.

