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Outsourcing

® Many applications require outsourcing computation to
untrusted service providers.
Main motivation: commercial cloud computing services.
Also, weak peripheral devices; fast but faulty co-processors.

Volunteer Computing (SETI(@home, World Community
Grid, etc.)

* User requires a guarantee that the cloud performed the

computation correctly.




AWS Customer Agreement

WE... MAKE NO REPRESENTATIONS OF ANY
KIND ... THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
ORTHAT ANY CONTENT ... WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

amazon
webservices™




Goals of Verifiable Computation

® (Goal 1: Provide user with a correctness guarantee.

® Goal 2: User must operate within the restrictive data
streaming paradigm (models a user who lacks the

resources to store the input locally).
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Interactive Proofs

® Prover P and Verifier V.

® P solves problem, tellsV the answer.
® Then P and V have a conversation.

e P’s goal: convince V the answer is correct.

° Requirements:

° 1. Completeness: an honest P can convince V

to accept.

® 2. Soundness: V will catch a lying P with high
probability (secure even if P is computationally

unbounded).




Streaming Interactive Proof (SIP) Model [CTY12]

e After both observe stream, P and V have a conversation.

e Fits cloud computing well: streaming pass byV can occur

while uploading data to cloud.

® V never needs to store entirety of data.




Costs of SIPs

® Two main costs: amount communication, and V’s working
memory. Both must be sublinear (ideally
polylogarithmic) in input size.

® Other costs: running time, number of messages.




History of Streaming Interactive Proofs

® [CTY12] introduced streaming interactive proofs (SIPs), gave

logarithmic cost protocols for many problems.

® Earlier work [CCMO09] had introduced a more restricted
model corresponding to one-message SIPs.

* [KP13, GR13, CTY12, CCMTV14, KP14] study variants
of these models.

* [CMT12] gave efficient implementations of protocols
from [CCM09, CMT10] (and from the literature on

“classical” interactive prootfs).




Talk Outline

® Part 1: Exponentially more efficient two-message SIPs for

many problems.

e Part 2: New communication models that allow us to

investigate the limitations of constant-round SIPs.




Part |: Exponentially More Efficient

Constant-Round SIPs




INDEX Problem

® Data stream specifies a vector x followed by an index 1. Goal is to

output X;.

® Requires Q(7) space in the standard streaming model.




Prior Work on SIPs for INDEX

* [CCM09/CCMT14]: A 1-message protocol with space and
comm. costs 0(\/; ). Showed this is optimal.

* [CTY12]: A (2k-1)-message protocol with cost O(n"*“*").

* All of these protocols based on public-coin sum-check
techniques [LFKN90].

* [KP13] claimed a matching lower bound for any k>0.
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Prior Work on SIPs for INDEX

* [CCM09/CCMT14]: A 1-message protocol with space and
comm. costs 0(\/; ). Showed this is optimal.

* [CTY12]: A (2k-1)-message protocol with cost O(n"*“*").

* All of these protocols based on public-coin sum-check
techniques [LFKN90].

® We show [KP13] lower bound only applies to “public coin” SIPs.
® We give a 2-message protocol with cost O(lognloglogn).
® Protocol adapts result of [Raz05] on IP/rpoly. See also [CKLR11].

* Later, we’ll build on this protocol to solve more complicated

problems (NNS, RangeCount, PatternMatching, Median, etc).




The 2-message SIP for INDEX




A general technique

® Arithmetization: Given function g defined on small domain,
replace g with its multilinear extension g as a polynomial

defined over a large field.

* Can view g as error-corrected encoding of g: If two
(boolean) functions ditfer in one location, their multilinear

extensions will differ in almost all locations.

® Error-correcting properties give V considerable power over

P.




The INDEX Problem

® Data stream specifies a vector x followed by an index 1. Goal is

to output X;.




The INDEX Protocol, Part 1

® View X as a function mapping {0,1}"#" — {0,1} via:
X(Jy»ees Jiogn) = X ;» Where (..., ji,,,) is the binary representation
of j.

* Fix a finite field F of size at least 4logn.

® V picks a random vector r € F*¢" and evaluates X(r) in

streaming pass over X (requires space O(lognlog|Fl)).




How Can V Evaluate x(r)?

* For each j€E€{0,1}'**", define 8, : {0,1}*" — {0,1} via:
6,(k) =1 if j=k and 8,(k) := 0 otherwise.

* Note: X = E x 0, as formal polynomials, where 9,
jE{O,l}logn

is the multilinear extension of 5j.

* SoX(r)= E Xjai(r).

JE{0, 13 10gn

® i.e., each entry j of x contributes independently to

X(r) (V can just keep a running sum while observing stream).

/
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X

Boolean Hypercube
{O , 1 }log n

e denotes entries of x

that equal 1.

Evaluation point r.

Query point 1.

Extended Hypercube
Flogn




The INDEX Protocol, Part 2

® Let A denote the unique line through bothi and r.
® Upon learning i,V sends A to P.

® P responds with a univariate polynomial G(t) of degree at
most logn claimed to equal X(A(2)).

® Lett* be such that A(r*) =r.
® Vrejectsit G(r*)= X(r), and accepts otherwise,

® Total communication is O(lognlog|F|) bits.




Completeness

° If P actually sends G(7)= x(A(t)) thenV’s check will pass,
since in this case G(#*)=X(r).




Soundness

* If P actually sends G(¢) = X(A(1)) then G(#)and X(A(¢)) can only
agree at logn/|F| points.

® From P’s perspective, once he receives the message A(¢),
r is uniformly distributed in Range(A4)\{i}. So the probability
that G(#*) = X(A(r*)) = X(r) is at most logn/(IF1-1)<1/3.




Extensions of the INDEX Protocol




Polylogarithmic Cost Protocols

* We give polylogarithmic cost protocols for the following
problems.

® Nearest Neighbor Search under many standard metrics (L, L,,
L., etc.)

® Median and Quantiles.

® RangeCount Queries.

® PatternMatching (with wildcards).




Overview of RangeCount Protocol

* RangeCount Problem: Fix a data universe [n] and a range space
R C 2I"l The input is list of points {x,, ..., x_} from [n],
followed by a range R*E€R. Goal is to output | {i: x,E R™} |.




Overview of RangeCount Protocol

* RangeCount Problem: Fix a data universe [n] and a range space
R C 2I"l The input is list of points {x,, ..., x_} from [n],
followed by a range R*E€R. Goal is to output | {i: x,E R™} |.

® Basic idea: Reduce to the (Generalized) INDEX problem.

® Create a “derived stream” consisting entirely of ranges.
® On stream update x,, insert a copy of every range R that x;is in.

® V needs to know the frequency of R* in derived stream. Can
answer this with the (Generalized) INDEX protocol.

® Space and communication costs are onlyO(log | R [1oglog IR 1).

® Problem:V requires |R| time per stream update!




Online Interactive Proofs

(Communication Model)




So How Powerful Are O(1)-Round SIPs?

e INDEX has a two-message protocol of logarithmic cost.

® Does a similar protocol exist for “harder” problems such as
DIS]OINTNESS?




So How Powerful Are O(1)-Round SIPs?

e INDEX has a two-message protocol of logarithmic cost.

® Does a similar protocol exist for “harder” problems such as
DIS]OINTNESS?

* 'To investigate, we introduce two hierarchies of communication

models called OIP_ and OIP.

® OIP, [k] can simulate all k-message SIPs. So lower bounds
against OIP, protocols imply ones against SIPs.

o OIP[k] is weaker, but can still simulate all known SIPs, and

captures the fundamental way SIPs differ from IPs.




AM®C [BFS80]
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Merlin

Step 3: Alice sends a
single message to Bob,
X who then outputs a bit. y




OIP[k] Can Simulate All Known k-

message SIPs




OIP[2] protocol of
cost O(log n loglog n)
for INDEX.
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Merlin

Goal: Output x..




Merlin

Step 1: Ahce and Bob toss
“secret coins” that are hidden
from Merlin to choose .

evaluation point r.
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A Communication Complexity Zoo

AMCC

0

OIP!'| e OIP|’| medP OIPI’] memdd OIPI*]

OIP[k>4]

Notation:
* OIPI*l denotes class of functions solved by polylog cost OIP[k]
protocols, AM®¢ functions solved by polylog cost AM® protocols.
w2 dcnotes containment with exponential separation.

° enotes equality.
d quality




Main Findings

* Any OIP[2] or OIP[3] protocol for DISJOINTNESS has cost
Q(n"?) and Q(n'”) respectively. Both bounds are tight.

® i.e. There is no three—message SIP of polylog cost for
DISJOINTNESS using “known techniques”.

* OIP[4] is equivalent to AM®, a communication class beyond
the reach of current lower bound methods.

® i.e. Proving lower bounds on 4-message SIPs may be challenging.

® Generic round-reduction impossible in the OIP hierarchy.
® In contrast, AM[O(1)]=AM]2] in classical interactive proofs.




Thank you!




A Communication Complexity Zoo
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Notation:

* RI5As class of functions solved by (standard) randomized k-message

protocols of polylog cost, where Alice speaks first.
e OMAM OIPK and OIP, ™ are classes of functions solved by polylog
cost protocols at k’'th level of OMA, OIP, and OIP, hierarchies.
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Main Findings

* Any OIP[2] or OIP[3] protocol for DISJOINTNESS has cost

® i.e. There is no three—message SIP of polylog cost for
DISJOINTNESS using “known techniques”.

® OIP[4] is equivalent to AM®, a communication class beyond
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® i.e. Proving lower bounds on 4-message SIPs may be challenging.

® Generic round-reduction impossible in the OIP hierarchy.

® In contrast, AM[O(1)]=AM]2] in classical interactive proofs.




R[2.8] C Q[PI2]

® Suppose we are given a Z—message randomized communication

protocol Q, of cost C, with Bob speaking first.
® We give an OIP[2] protocol Q, that simulates Q, with a

quadratic blowup in cost.




R[2.8] C Q[PI2]

Suppose we are given a Z—message randomized communication

protocol Q, of cost C, with Bob speaking first.
We give an OIP[2] protocol Q, that simulates Q, with a

quadratic blowup in cost.
Alice(Q),) and Bob(Q),) first toss the coins they would use in Q).
Alice(Q,) then runs our (Generalized) INDEX protocol on the

2¢-dimensional vector x whose ith entry is what Alice(Q,)’s

response to Bob(Q,) would be if Bob(Q,)’s message to Alice(Q),)

was 1.

Our INDEX protocol must be run over field F of size ~2¢, so
total cost is O(C log | F|)=0(C?).

/




OIP2IC RI2 Bl: Part 1

* Suppose we are given an OIP[2] protocol Q, of cost C.

* We give an R> Blprotocol Q, that simulates Q, with a quadratic
blowup in cost.
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OIP2IC RI2 Bl: Part 1

Suppose we are given an OIP[2] protocol Q, of cost C.

We give an RI> Pl protocol Q, that simulates Q, with a quadratic
blowup in cost.

Alice(Q,) and Bob(Q),) first toss the “secret coins” they would
use in Q,. Say these coins come from a distribution D.

Bob(Q),) can then determine the message my that Bob(Q,) would
send to Merlin.

Let DmB denote D conditioned on the event that Bob(Q,)’s

message to Merlin is m;.

Alice(Q),) and Bob(Q),)’s goal then becomes:

Determine whether there exists a message m,, that Merlin could send
in Q, that would cause Alice(Q,) and Bob(Q),) to output 1 with high

probability if their secret coins come from distribution D__ .

’ /




OIP2IC RI2. Bl: Part 2

® Bob(Q,) takes h=0O(C) random samples r,, ... r, from the
distribution DmB, and sends them all to Alice.

® Bob can do this because m; does not depend on Alice’s input!

® For eachr,, Alice(Q,) tells Bob(Q,) what message Alice(Q,)

would send given secret randomness r..

® Now that Bob(Q),) knows what Alice(Q,) would say for all of the
r;’s, he iterates over all possible Merlin messages m,, and outputs
1 iff there is some m,, that would cause Bob(Q),) to accept for a

maj ority of the r/’s.




Thank you!




So how Powerful Are O(1)-Round SIPs?

e INDEX has a two-message protocol of logarithmic cost.

® Does a similar protocol exist for “harder” problems such as
DIS]OINTNESS?

® Answer: Probably not.




Left-overs

Given a d-variate polynomial gand line A, we let g | , be the

univariate polynomig(%,), and call this the restriction

of tad.
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The Polynomial Agreement Protocol

® Suppose a data stream specifies a v-variate
polynomial g over field F, followed by a point 1 in

F”v. Goal is to evaluate g(i).

® AslongasV can evaluate g at a random point r in
space s, there is a two-message protocol of space cost s

and comm. cost O(deg(g)log| F|) for this problem.




Median

* Input: a stream of numbers <x1, ..., xm> from a

universe of size n.

°* LetNj= | {j:xj<i}|.

® Goal: output a number i such that Ni-1<m/2 and
Ni+1>m/?2.




Reducing Median to Poly. Agreement

® “Treat” stream update xj as an insertion of items xj,
xjt1, ..., n. This creates a “derived stream” S such

that the frequency of item j in S is exactly Nj.

® Lety be the n-dimensional vector such that yj is the
frequency of item j in

e Atend of stream, P sends a claimed median i.

® To check that i is a median, it suffices for V to check

that, in the derived stream




