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Outsourcing 
�  Many applications require outsourcing computation to 

untrusted service providers. 
� Main motivation: commercial cloud computing services. 
� Also, weak peripheral devices; fast but faulty co-processors. 
� Volunteer Computing (SETI@home,World Community 

Grid, etc.) 

�  User requires a guarantee that the cloud performed the 
computation correctly.  



AWS Customer Agreement 
WE… MAKE NO REPRESENTATIONS OF ANY 
KIND … THAT THE SERVICE OR THIRD PARTY 
CONTENT WILL BE UNINTERRUPTED, ERROR 
FREE OR FREE OF HARMFUL COMPONENTS, 
OR THAT ANY CONTENT … WILL BE SECURE 
OR NOT OTHERWISE LOST OR DAMAGED. 



Goals of Verifiable Computation 
�  Goal 1: Provide user with a correctness guarantee. 
�  Goal 2: User must operate within the restrictive data 

streaming paradigm (models a user who lacks the 
resources to store the input locally). 
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Interactive Proofs 
�  Prover P and Verifier V. 

�  P solves problem, tells V the answer. 
� Then P and  V have a conversation. 
�  P’s goal: convince V the answer is correct. 

�  Requirements:  
�  1. Completeness: an honest P can convince V 

to accept. 
�  2. Soundness: V will catch a lying P with high 

probability (secure even if P is computationally 
unbounded). 



Streaming Interactive Proof (SIP) Model [CTY12] 
�  After both observe stream, P and V have a conversation. 

�  Fits cloud computing well: streaming pass by V can occur 
while uploading data to cloud. 

�  V never needs to store entirety of data. 
  
 
 



Costs of SIPs 
 

�  Two main costs: amount communication, and V’s working 
memory. Both must be sublinear (ideally 
polylogarithmic) in input size. 

�  Other costs: running time, number of messages.  



History of Streaming Interactive Proofs 
�  [CTY12] introduced streaming interactive proofs (SIPs), gave 

logarithmic cost protocols for many problems.  
�  Earlier work [CCM09] had introduced a more restricted 

model corresponding to one-message SIPs.  

�  [KP13, GR13, CTY12, CCMTV14, KP14] study variants 
of these models. 

�  [CMT12] gave efficient implementations of protocols 
from [CCM09, CMT10] (and from the literature on 
“classical” interactive proofs). 

 



Talk Outline 
�  Part 1: Exponentially more efficient two-message SIPs for 

many problems. 

�  Part 2: New communication models that allow us to 
investigate the limitations of constant-round SIPs. 



Part I: Exponentially More Efficient 
Constant-Round SIPs 



INDEX Problem 
�  Data stream specifies a vector x followed by an index i. Goal is to 

output xi. 
�  Requires           space in the standard streaming model.  
CCM09/CCMT13]: A 1-message protocol with space and comm. 
costs               Showed this is optimal. 
CTY10]: A (2k-1)-message protocol with cost  
All of these protocols based on public-coin sum-check techniques 
[LFKN90]. 
[KP13] claimed a matching lower bound for any k>0. 
�  We show [KP13] lower bound only applied to “public coin” SIPs. 
We give a 2-message protocol with cost 
Protocol adapts a result of [Raz05] on IP/rpoly.   
 
 

Ω(n)



Prior Work on SIPs for INDEX 
�  [CCM09/CCMT14]: A 1-message protocol with space and 

comm. costs               Showed this is optimal. 
�  [CTY12]: A (2k-1)-message protocol with cost  
�  All of these protocols based on public-coin sum-check 

techniques [LFKN90]. 
�  [KP13] claimed a matching lower bound for any k>0. 
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Prior Work on SIPs for INDEX 
�  [CCM09/CCMT14]: A 1-message protocol with space and 

comm. costs               Showed this is optimal. 
�  [CTY12]: A (2k-1)-message protocol with cost  
�  All of these protocols based on public-coin sum-check 

techniques [LFKN90]. 
�  [KP13] claimed a matching lower bound for any k>0. 
�  We show [KP13] lower bound only applies to “public coin” SIPs. 
�  We give a 2-message protocol with cost 
�  Protocol adapts result of [Raz05] on IP/rpoly. See also [CKLR11]. 
�  Later, we’ll build on this protocol to solve more complicated 

problems (NNS, RangeCount, PatternMatching, Median, etc).   

 
 

O( n ).
O(n1/(k+1) ).

O(logn log logn).



The 2-message SIP for INDEX 



A general technique 
�  Arithmetization: Given function    defined on small domain, 

replace    with its multilinear extension    as a polynomial 
defined over a large field. 

�  Can view    as error-corrected encoding of   : If two 
(boolean) functions differ in one location, their multilinear 
extensions will differ in almost all locations. 

�  Error-correcting properties give V considerable power over 
P. 

g
g g~

g~ g



The INDEX Problem 
�  Data stream specifies a vector x followed by an index    Goal is 

to output xi. 
i.



The INDEX Protocol, Part 1 
�  View x as a function mapping                             via: 
                               where                  is the binary representation     
   of  
�  Fix a finite field F of size at least   
�  V picks a random vector                and evaluates         in 

streaming pass over x (requires space  

{0,1}logn → {0,1}
x( j1,..., jlogn ) = x j, ( j1,..., jlogn )

j.

r ∈ Flogn, x(r)
O(logn log |F |)).

~
4 logn.



How Can V Evaluate       ? 
�  For each  

�  Note: 

    is the multilinear extension of 

�  So  

�  i.e., each entry j of x contributes independently to    
            (V can just keep a running sum while observing stream). 
   
 

x = xjδj
j∈{0,1}logn
∑  as formal polynomials, where δj

x(r)~

~~

j∈ {0,1}logn, define δj : {0,1}logn → {0,1}via:
δj(k) :=1 if j=k and δj(k) := 0 otherwise. 

δj.

~

x(r) = xjδj
j∈{0,1}logn
∑ (r).~ ~

~x(r)



The INDEX Protocol, Part 2 

Boolean Hypercube  
{0, 1}log n 

Extended Hypercube  
Flogn

denotes entries of x  
that equal 1.  

x~

x
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The INDEX Protocol, Part 2 

Boolean Hypercube  
{0, 1}log n 

Extended Hypercube  

denotes entries of x  
that equal 1.  

Evaluation point r. 

Query point i. 
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x
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The INDEX Protocol, Part 2 

Boolean Hypercube  
{0, 1}log n 

Extended Hypercube  

denotes entries of x  
that equal 1.  

Evaluation point r. 

Query point i. 

Challenge lineλ 

x~

x

Flogn



The INDEX Protocol, Part 2 
�  Let    denote the unique line through both   and   
�  Upon learning  , V sends    to P. 
�  P responds with a univariate polynomial        of degree at 

most         claimed to equal  
�  Let      be such that  
�  V rejects if                        and accepts otherwise. 
�  Total communication is                            bits.  

λ i r.
i λ

x(λ(t)).

λ(t*) = r.
G(t*) ≠ x(r),

O(logn log |F |)

G(t)
logn
t *

~

~



Completeness 
�  If P actually sends                          then V’s check will pass, 

since in this case 
G(t) = x(λ(t))
G(t*) = x(r).

~
~



Soundness 
�  If P actually sends                        then        and             can only 

agree at                 points. 
�  From P’s perspective, once he receives the message        , 
   r is uniformly distributed in                          So the probability                
   that                                      is at most  
                                            

G(t) ≠ x(λ(t)) G(t)
logn/ |F |

λ(t)
Range(λ) \ {i}.

G(t*) = x(λ(t*)) = x(r) logn / (|F |−1)<1/ 3.

~

~

x(λ(t))~



Extensions of the INDEX Protocol 



Polylogarithmic Cost Protocols 
�  We give polylogarithmic cost protocols for the following 

problems.  
� Nearest Neighbor Search under many standard metrics (L1, L2, 

L∞, etc.)  
� Median and Quantiles. 
� RangeCount Queries. 
�  PatternMatching (with wildcards). 



Overview of RangeCount Protocol 
�  RangeCount Problem: Fix a data universe [n] and a range space 

R     2[n]. The input is list of points {x1, …, xm} from [n], 
followed by a range R*    R. Goal is to output |{i: xi      R*}|. 
⊆

∈ ∈



Overview of RangeCount Protocol 
�  RangeCount Problem: Fix a data universe [n] and a range space 

R     2[n]. The input is list of points {x1, …, xm} from [n], 
followed by a range R*    R. Goal is to output |{i: xi      R*}|. 

�  Basic idea: Reduce to the (Generalized) INDEX problem. 
� Create a “derived stream” consisting entirely of ranges. 
� On stream update xi, insert a copy of every range R that xi is in. 
� V needs to know the frequency of R* in derived stream. Can 

answer this with the (Generalized) INDEX protocol.  
�  Space and communication costs are only  
�  Problem: V requires |R| time per stream update! 

⊆
∈ ∈

O(log |R | loglog |R |).



Online Interactive Proofs 
(Communication Model) 



So How Powerful Are O(1)-Round SIPs? 
�  INDEX has a two-message protocol of logarithmic cost. 
�  Does a similar protocol exist for “harder” problems such as 

DISJOINTNESS? 
To investigate this question, we introduce a hierarchy of 
communication models that we call online interactive 
proofs (OIPs). 
OIPs can simulate streaming interactive proofs.  
We show OIPs behave very differently than classical interactive 
proofs! 



So How Powerful Are O(1)-Round SIPs? 
�  INDEX has a two-message protocol of logarithmic cost. 
�  Does a similar protocol exist for “harder” problems such as 

DISJOINTNESS? 
�  To investigate, we introduce two hierarchies of communication 

models called OIP+ and OIP. 
�  OIP+[k] can simulate all k-message SIPs. So lower bounds 

against OIP+ protocols imply ones against SIPs. 
�  OIP[k] is weaker, but can still simulate all known SIPs, and 

captures the fundamental way SIPs differ from IPs. 



AMcc [BFS86] 



Alice Bob 

Merlin 

x y 

Goal: Compute f(x,y) 
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Step 3: Alice and Bob engage in 
deterministic communication 
protocol. Bob outputs a bit. 



OIP+[k] 
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OIP[k] 
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Step 2:Bob and Merlin 
engage in k-message 

interaction. 



Alice Bob 

Merlin 
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Step 3: Alice sends a 
single message to Bob, 
who then outputs a bit. 



OIP[k] Can Simulate All Known k-
message SIPs 



Alice Bob 

Merlin 

x i 

Goal: Output xi. 

OIP[2] protocol of 
cost O(log n loglog n) 

for INDEX. 
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Step 1: Alice and Bob toss 
“secret coins” that are hidden 

from Merlin to choose 
evaluation point r. 
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Merlin 
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Bob sends Merlin λ, the 
line through r and i. 
Merlin responds to 

univariate polynomial G(t) 
claimed to equal           a  x(λ(t)).~



Alice Bob 

Merlin 

x i 

Alice sends Bob  
x(r).~



Notation:  
•  OIP[k] denotes class of functions solved by polylog cost OIP[k] 

protocols, AMcc functions solved by polylog cost AMcc protocols. 
    denotes containment with exponential separation. 

•               denotes equality. 

A Communication Complexity Zoo 

OIP[1]   OIP[2]      OIP[3]    OIP[4]       

AMcc 

OIP[k>4] 



Main Findings 
�  Any OIP[2] or OIP[3] protocol for DISJOINTNESS has cost 

�  i.e. There is no three-message SIP of polylog cost for 
DISJOINTNESS using “known techniques”. 

�  OIP[4] is equivalent to AMcc, a communication class beyond 
the reach of current lower bound methods.  
�  i.e. Proving lower bounds on 4-message SIPs may be challenging. 

�  Generic round-reduction impossible in the OIP hierarchy. 
�  In contrast, AM[O(1)]=AM[2] in classical interactive proofs. 

Ω(n1/2 ) and Ω(n1/3) respectively. Both bounds are tight.



Thank you! 



R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Figure 1: The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that C1 � C2. If the
arrow is double-headed, then the inclusion is strict. Within the figure, k is an arbitrary constant larger than 4.

level. In contrast, the AMTM hierarchy collapses to the second level [7]. Adding to the contrast with Turing
Machine phenomena, the OMA[k] classes are exponentially weaker than their OIP[k] counterparts (in fact,
weaker than even OIP[2]) whereas their classical counterparts IP[k]

TM and AM[k]
TM are equivalent [22].

2.4 A Non-Interactive Protocol for Counting Triangles

Finally, we consider the data stream problem TRIANGLES, where the input consists of arrivals and departures
of edges (u,v) of an undirected graph on vertex set [n]. The goal is to output the number of triangles in
the final resulting graph. This requires �(n2) space in the ordinary data stream model. Chakrabarti et
al. [10] gave an annotated data stream algorithm for TRIANGLES with cost O(n3/2 logn); Cormode [13]
asked whether this could be improved. Our next result shows that it can; we give a near-optimal upper
bound, thereby also resolving the MA complexity of TRIANGLES up to a logarithmic factor.

Theorem 2.3. There is an annotated data stream algorithm for TRIANGLES with space and help costs
O(n logn). Every such algorithm requires the product of the space and help costs to be �(n2).

Like most prior work on annotated data streams, we use algebraic techniques as in the sum-check pro-
tocol of Lund et al. [19]. Yet, we deviate from all earlier annotated data stream protocols, as well as many
prominent interactive protocols, in a big way. Roughly speaking, in previous protocols, the verifier’s up-
dates to her memory state were “commutative,” in the sense that reordering the stream tokens would not
change the final state reached by the verifier. However, our new verifier is inherently “non-commutative”:
her update to her state at time i depends on her actual state at time i. See Section 6.1 for further discussion.

Our protocol does not achieve smooth tradeoffs between space and help costs: we do not know how
to reduce the space usage to o(n logn) without blowing the annotation length up to �(n2), or vice versa.
This is in contrast to prior work on annotated data streams [10, 11, 14, 23], which typically achieved any
combination of space and help costs subject to the product of these two costs being above some threshold.
We conjecture that achieving such smooth tradeoffs for TRIANGLES is impossible.

3 The Polynomial Evaluation Protocol and Its Applications

We shall present a two-round SIP for an abstract data stream problem called “polynomial evaluation,” where
the input consists of a multivariate polynomial described implicitly, as a table of values, followed by a point
at which the polynomial must be evaluated. Without space constraints, this problem simply amounts to
interpolation followed by direct evaluation, but our goal is to obtain a protocol where the verifier uses space

6

Notation:  
•  R[k, A] is class of functions solved by (standard) randomized k-message 

protocols of polylog cost, where Alice speaks first. 
•  OMA[k] , OIP[k], and OIP+

[k] are classes of functions solved by polylog 
cost protocols at k’th level of OMA, OIP, and OIP+ hierarchies. 

A Communication Complexity Zoo 



Main Findings 
�  Any OIP[2] or OIP[3] protocol for DISJOINTNESS has cost 
 

�  i.e. There is no three-message SIP of polylog cost for 
DISJOINTNESS using “known techniques”. 

�  OIP[4] is equivalent to AMcc, a communication class beyond 
the reach of current lower bound methods.  
�  i.e. Proving lower bounds on 4-message SIPs may be challenging. 

�  Generic round-reduction impossible in the OIP hierarchy. 
�  In contrast, AM[O(1)]=AM[2] in classical interactive proofs. 



R[2, B]        OIP[2]  

�  Suppose we are given a 2-message randomized communication 
protocol Q1 of cost C, with Bob speaking first. 

�  We give an OIP[2] protocol Q2 that simulates Q1 with a 
quadratic blowup in cost. 

Alice(Q2) and Bob(Q2) first toss the coins they would use in Q1.  
Alice(Q2) then runs the “INDEX” protocol on the 2C-dimensional 
vector x whose ith entry is what Alice(Q1)’s response to Bob(Q1) 
would be if Bob(Q1)’s message to Alice(Q1) was i.  
INDEX protocol must be run over field F of size ~2C, so total cost 
is O(C log|F|)=O(C2). 

⊆
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�  Suppose we are given a 2-message randomized communication 
protocol Q1 of cost C, with Bob speaking first. 

�  We give an OIP[2] protocol Q2 that simulates Q1 with a 
quadratic blowup in cost. 

�  Alice(Q2) and Bob(Q2) first toss the coins they would use in Q1.  
�  Alice(Q2) then runs our (Generalized) INDEX protocol on the 

2C-dimensional vector x whose ith entry is what Alice(Q1)’s 
response to Bob(Q1) would be if Bob(Q1)’s message to Alice(Q1) 
was i.  

�  Our INDEX protocol must be run over field F of size ~2C, so 
total cost is O(C log|F|)=O(C2). 
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OIP[2]      R[2, B]: Part 1   

�  Suppose we are given an OIP[2] protocol Q2 of cost C. 
�  We give an R[2, B] protocol Q1 that simulates Q2 with a quadratic 

blowup in cost. 
Alice(Q1) and Bob(Q1) first toss the “secret coins” they would use 
in Q2. Say these coins come from a distribution D. 
Bob(Q1) can then determine the message mB that Bob(Q2) would 
send to Merlin.  
Let DmB 

denote D conditioned on the event that Bob(Q2)’s message 
to Merlin is mB. 
Alice(Q1) and Bob(Q1)’s goal then becomes: 

Determine whether there exists a message mM that Merlin could send 
in Q2 that would “cause Alice(Q2) and Bob(Q2) to output 1 with high 
probability if their secret coins come from distribution DmB

. 

⊆
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send to Merlin.  
�  Let DmB 

denote D conditioned on the event that Bob(Q2)’s 
message to Merlin is mB. 

�  Alice(Q1) and Bob(Q1)’s goal then becomes: 
Determine whether there exists a message mM that Merlin could send 
in Q2 that would cause Alice(Q2) and Bob(Q2) to output 1 with high 
probability if their secret coins come from distribution DmB

. 
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OIP[2]      R[2, B]: Part 2   

�  Bob(Q1) takes h=O(C) random samples r1, … rh from the 
distribution DmB

, and sends them all to Alice. 
�  Bob can do this because mB does not depend on Alice’s input! 

�  For each ri, Alice(Q1) tells Bob(Q1) what message Alice(Q2) 
would send given secret randomness ri. 

�  Now that Bob(Q1) knows what Alice(Q2) would say for all of the 
ri’s, he iterates over all possible Merlin messages mM and outputs 
1 iff there is some mM that would cause Bob(Q2) to accept for a 
majority of the ri’s. 

⊆



Thank you! 



So how Powerful Are O(1)-Round SIPs? 
�  INDEX has a two-message protocol of logarithmic cost. 
�  Does a similar protocol exist for “harder” problems such as 

DISJOINTNESS? 
�  Answer: Probably not.  
 



Left-overs 
Given a d-variate polynomial   and line     we let        be the 

univariate polynomial            and call this the restriction 
of      to   

 

g λ, g
λ

g(hλ ),
g λ.



The Polynomial Agreement Protocol 
�  Suppose a data stream specifies a v-variate 

polynomial g over field F, followed by a point i in 
F^v. Goal is to evaluate g(i). 

�  As long as V can evaluate g at a random point r in 
space s, there is a two-message protocol of space cost s 
and comm. cost O(deg(g)log|F|) for this problem. 

 



Median 
�  Input: a stream of numbers <x1, …, xm> from a 

universe of size n.  
�  Let Nj = |{j:xj<i}|. 
�  Goal: output a number i such that Ni-1<m/2 and 

Ni+1>m/2.  



Reducing Median to Poly. Agreement 
�  “Treat” stream update xj as an insertion of items xj, 

xj+1, …, n. This creates a “derived stream” S such 
that the frequency of item j in S is exactly Nj.  

�  Let y be the n-dimensional vector such that yj is the 
frequency of  item j in  

�  At end of stream, P sends a claimed median i. 
�  To check that i is a median, it suffices for V to check 

that, in the derived stream 


