
Justin Thaler, Yahoo! Labs
Joint Work with:

Amit Chakrabarti, Dartmouth
Graham Cormode, University of Warwick

Andrew McGregor, Umass Amherst
Suresh Venkatasubramanian, University of Utah

Stream Computation and Arthur-
Merlin Communication

Outsourcing
�  Many applications require outsourcing computation to

untrusted service providers.
� Main motivation: commercial cloud computing services.
� Also, weak peripheral devices; fast but faulty co-processors.
� Volunteer Computing (SETI@home,World Community

Grid, etc.)

�  User requires a guarantee that the cloud performed the
computation correctly.

AWS Customer Agreement
WE… MAKE NO REPRESENTATIONS OF ANY
KIND … THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
OR THAT ANY CONTENT … WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

Goals of Verifiable Computation
�  Goal 1: Provide user with a correctness guarantee.
�  Goal 2: User must operate within the restrictive data

streaming paradigm (models a user who lacks the
resources to store the input locally).

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Data	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Data	

Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Challenge	

Response	

Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Challenge	

Response	

Accept	 	
or	

Reject	

Interactive Proofs
�  Prover P and Verifier V.

�  P solves problem, tells V the answer.
� Then P and V have a conversation.
�  P’s goal: convince V the answer is correct.

�  Requirements:
�  1. Completeness: an honest P can convince V

to accept.
�  2. Soundness: V will catch a lying P with high

probability (secure even if P is computationally
unbounded).

Streaming Interactive Proof (SIP) Model [CTY12]
�  After both observe stream, P and V have a conversation.

�  Fits cloud computing well: streaming pass by V can occur
while uploading data to cloud.

�  V never needs to store entirety of data.

Costs of SIPs

�  Two main costs: amount communication, and V’s working
memory. Both must be sublinear (ideally
polylogarithmic) in input size.

�  Other costs: running time, number of messages.

History of Streaming Interactive Proofs
�  [CTY12] introduced streaming interactive proofs (SIPs), gave

logarithmic cost protocols for many problems.
�  Earlier work [CCM09] had introduced a more restricted

model corresponding to one-message SIPs.

�  [KP13, GR13, CTY12, CCMTV14, KP14] study variants
of these models.

�  [CMT12] gave efficient implementations of protocols
from [CCM09, CMT10] (and from the literature on
“classical” interactive proofs).

Talk Outline
�  Part 1: Exponentially more efficient two-message SIPs for

many problems.

�  Part 2: New communication models that allow us to
investigate the limitations of constant-round SIPs.

Part I: Exponentially More Efficient
Constant-Round SIPs

INDEX Problem
�  Data stream specifies a vector x followed by an index i. Goal is to

output xi.
�  Requires space in the standard streaming model.
CCM09/CCMT13]: A 1-message protocol with space and comm.
costs Showed this is optimal.
CTY10]: A (2k-1)-message protocol with cost
All of these protocols based on public-coin sum-check techniques
[LFKN90].
[KP13] claimed a matching lower bound for any k>0.
�  We show [KP13] lower bound only applied to “public coin” SIPs.
We give a 2-message protocol with cost
Protocol adapts a result of [Raz05] on IP/rpoly.

Ω(n)

Prior Work on SIPs for INDEX
�  [CCM09/CCMT14]: A 1-message protocol with space and

comm. costs Showed this is optimal.
�  [CTY12]: A (2k-1)-message protocol with cost
�  All of these protocols based on public-coin sum-check

techniques [LFKN90].
�  [KP13] claimed a matching lower bound for any k>0.

O(n).
O(n1/(k+1)).

Prior Work on SIPs for INDEX
�  [CCM09/CCMT14]: A 1-message protocol with space and

comm. costs Showed this is optimal.
�  [CTY12]: A (2k-1)-message protocol with cost
�  All of these protocols based on public-coin sum-check

techniques [LFKN90].
�  [KP13] claimed a matching lower bound for any k>0.
�  We show [KP13] lower bound only applies to “public coin” SIPs.
�  We give a 2-message protocol with cost
�  Protocol adapts result of [Raz05] on IP/rpoly. See also [CKLR11].
�  Later, we’ll build on this protocol to solve more complicated

problems (NNS, RangeCount, PatternMatching, Median, etc).

O(n).
O(n1/(k+1)).

O(logn log logn).

The 2-message SIP for INDEX

A general technique
�  Arithmetization: Given function defined on small domain,

replace with its multilinear extension as a polynomial
defined over a large field.

�  Can view as error-corrected encoding of : If two
(boolean) functions differ in one location, their multilinear
extensions will differ in almost all locations.

�  Error-correcting properties give V considerable power over
P.

g
g g~

g~ g

The INDEX Problem
�  Data stream specifies a vector x followed by an index Goal is

to output xi.
i.

The INDEX Protocol, Part 1
�  View x as a function mapping via:
 where is the binary representation
 of
�  Fix a finite field F of size at least
�  V picks a random vector and evaluates in

streaming pass over x (requires space

{0,1}logn → {0,1}
x(j1,..., jlogn) = x j, (j1,..., jlogn)

j.

r ∈ Flogn, x(r)
O(logn log |F |)).

~
4 logn.

How Can V Evaluate ?
�  For each

�  Note:

 is the multilinear extension of

�  So

�  i.e., each entry j of x contributes independently to
 (V can just keep a running sum while observing stream).

x = xjδj
j∈{0,1}logn
∑ as formal polynomials, where δj

x(r)~

~~

j∈ {0,1}logn, define δj : {0,1}logn → {0,1}via:
δj(k) :=1 if j=k and δj(k) := 0 otherwise.

δj.

~

x(r) = xjδj
j∈{0,1}logn
∑ (r).~ ~

~x(r)

The INDEX Protocol, Part 2

Boolean Hypercube
{0, 1}log n

Extended Hypercube
Flogn

denotes entries of x
that equal 1.

x~

x

The INDEX Protocol, Part 2

Boolean Hypercube
{0, 1}log n

Extended Hypercube

denotes entries of x
that equal 1.

Evaluation point r.

x~

x

Flogn

The INDEX Protocol, Part 2

Boolean Hypercube
{0, 1}log n

Extended Hypercube

denotes entries of x
that equal 1.

Evaluation point r.

Query point i.

x~

x

Flogn

The INDEX Protocol, Part 2

Boolean Hypercube
{0, 1}log n

Extended Hypercube

denotes entries of x
that equal 1.

Evaluation point r.

Query point i.

Challenge lineλ

x~

x

Flogn

The INDEX Protocol, Part 2
�  Let denote the unique line through both and
�  Upon learning , V sends to P.
�  P responds with a univariate polynomial of degree at

most claimed to equal
�  Let be such that
�  V rejects if and accepts otherwise.
�  Total communication is bits.

λ i r.
i λ

x(λ(t)).

λ(t*) = r.
G(t*) ≠ x(r),

O(logn log |F |)

G(t)
logn
t *

~

~

Completeness
�  If P actually sends then V’s check will pass,

since in this case
G(t) = x(λ(t))
G(t*) = x(r).

~
~

Soundness
�  If P actually sends then and can only

agree at points.
�  From P’s perspective, once he receives the message ,
 r is uniformly distributed in So the probability
 that is at most

G(t) ≠ x(λ(t)) G(t)
logn/ |F |

λ(t)
Range(λ) \ {i}.

G(t*) = x(λ(t*)) = x(r) logn / (|F |−1)<1/ 3.

~

~

x(λ(t))~

Extensions of the INDEX Protocol

Polylogarithmic Cost Protocols
�  We give polylogarithmic cost protocols for the following

problems.
� Nearest Neighbor Search under many standard metrics (L1, L2,

L∞, etc.)
� Median and Quantiles.
� RangeCount Queries.
�  PatternMatching (with wildcards).

Overview of RangeCount Protocol
�  RangeCount Problem: Fix a data universe [n] and a range space

R 2[n]. The input is list of points {x1, …, xm} from [n],
followed by a range R* R. Goal is to output |{i: xi R*}|.
⊆

∈ ∈

Overview of RangeCount Protocol
�  RangeCount Problem: Fix a data universe [n] and a range space

R 2[n]. The input is list of points {x1, …, xm} from [n],
followed by a range R* R. Goal is to output |{i: xi R*}|.

�  Basic idea: Reduce to the (Generalized) INDEX problem.
� Create a “derived stream” consisting entirely of ranges.
� On stream update xi, insert a copy of every range R that xi is in.
� V needs to know the frequency of R* in derived stream. Can

answer this with the (Generalized) INDEX protocol.
�  Space and communication costs are only
�  Problem: V requires |R| time per stream update!

⊆
∈ ∈

O(log |R | loglog |R |).

Online Interactive Proofs
(Communication Model)

So How Powerful Are O(1)-Round SIPs?
�  INDEX has a two-message protocol of logarithmic cost.
�  Does a similar protocol exist for “harder” problems such as

DISJOINTNESS?
To investigate this question, we introduce a hierarchy of
communication models that we call online interactive
proofs (OIPs).
OIPs can simulate streaming interactive proofs.
We show OIPs behave very differently than classical interactive
proofs!

So How Powerful Are O(1)-Round SIPs?
�  INDEX has a two-message protocol of logarithmic cost.
�  Does a similar protocol exist for “harder” problems such as

DISJOINTNESS?
�  To investigate, we introduce two hierarchies of communication

models called OIP+ and OIP.
�  OIP+[k] can simulate all k-message SIPs. So lower bounds

against OIP+ protocols imply ones against SIPs.
�  OIP[k] is weaker, but can still simulate all known SIPs, and

captures the fundamental way SIPs differ from IPs.

AMcc [BFS86]

Alice Bob

Merlin

x y

Goal: Compute f(x,y)

Alice Bob

Merlin

x y Step 1: Random coins are
broadcasted.

Alice Bob

Merlin

x y

Step 2: Merlin
broadcasts a message

to Alice and Bob

Alice Bob

Merlin

x y

Step 3: Alice and Bob engage in
deterministic communication
protocol. Bob outputs a bit.

OIP+[k]

Alice Bob

Merlin

x y

Step 1: Alice and Bob toss
“secret coins” that are hidden

from Merlin.

Alice Bob

Merlin

x y

Step 2: Alice sends a
single message to Bob.

Alice Bob

Merlin

x y

Step 3:Bob and Merlin
engage in k-message

interaction.

OIP[k]

Alice Bob

Merlin

x y

Step 1: Alice and Bob toss
“secret coins” that are hidden

from Merlin.

Alice Bob

Merlin

x y

Step 2:Bob and Merlin
engage in k-message

interaction.

Alice Bob

Merlin

x y

Step 3: Alice sends a
single message to Bob,
who then outputs a bit.

OIP[k] Can Simulate All Known k-
message SIPs

Alice Bob

Merlin

x i

Goal: Output xi.

OIP[2] protocol of
cost O(log n loglog n)

for INDEX.

Alice Bob

Merlin

x i

Step 1: Alice and Bob toss
“secret coins” that are hidden

from Merlin to choose
evaluation point r.

Alice Bob

Merlin

x i

Bob sends Merlin λ, the
line through r and i.
Merlin responds to

univariate polynomial G(t)
claimed to equal a x(λ(t)).~

Alice Bob

Merlin

x i

Alice sends Bob
x(r).~

Notation:
•  OIP[k] denotes class of functions solved by polylog cost OIP[k]

protocols, AMcc functions solved by polylog cost AMcc protocols.
 denotes containment with exponential separation.

•  denotes equality.

A Communication Complexity Zoo

OIP[1] OIP[2] OIP[3] OIP[4]

AMcc

OIP[k>4]

Main Findings
�  Any OIP[2] or OIP[3] protocol for DISJOINTNESS has cost

�  i.e. There is no three-message SIP of polylog cost for
DISJOINTNESS using “known techniques”.

�  OIP[4] is equivalent to AMcc, a communication class beyond
the reach of current lower bound methods.
�  i.e. Proving lower bounds on 4-message SIPs may be challenging.

�  Generic round-reduction impossible in the OIP hierarchy.
�  In contrast, AM[O(1)]=AM[2] in classical interactive proofs.

Ω(n1/2) and Ω(n1/3) respectively. Both bounds are tight.

Thank you!

R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Figure 1: The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that C1 � C2. If the
arrow is double-headed, then the inclusion is strict. Within the figure, k is an arbitrary constant larger than 4.

level. In contrast, the AMTM hierarchy collapses to the second level [7]. Adding to the contrast with Turing
Machine phenomena, the OMA[k] classes are exponentially weaker than their OIP[k] counterparts (in fact,
weaker than even OIP[2]) whereas their classical counterparts IP[k]

TM and AM[k]
TM are equivalent [22].

2.4 A Non-Interactive Protocol for Counting Triangles

Finally, we consider the data stream problem TRIANGLES, where the input consists of arrivals and departures
of edges (u,v) of an undirected graph on vertex set [n]. The goal is to output the number of triangles in
the final resulting graph. This requires �(n2) space in the ordinary data stream model. Chakrabarti et
al. [10] gave an annotated data stream algorithm for TRIANGLES with cost O(n3/2 logn); Cormode [13]
asked whether this could be improved. Our next result shows that it can; we give a near-optimal upper
bound, thereby also resolving the MA complexity of TRIANGLES up to a logarithmic factor.

Theorem 2.3. There is an annotated data stream algorithm for TRIANGLES with space and help costs
O(n logn). Every such algorithm requires the product of the space and help costs to be �(n2).

Like most prior work on annotated data streams, we use algebraic techniques as in the sum-check pro-
tocol of Lund et al. [19]. Yet, we deviate from all earlier annotated data stream protocols, as well as many
prominent interactive protocols, in a big way. Roughly speaking, in previous protocols, the verifier’s up-
dates to her memory state were “commutative,” in the sense that reordering the stream tokens would not
change the final state reached by the verifier. However, our new verifier is inherently “non-commutative”:
her update to her state at time i depends on her actual state at time i. See Section 6.1 for further discussion.

Our protocol does not achieve smooth tradeoffs between space and help costs: we do not know how
to reduce the space usage to o(n logn) without blowing the annotation length up to �(n2), or vice versa.
This is in contrast to prior work on annotated data streams [10, 11, 14, 23], which typically achieved any
combination of space and help costs subject to the product of these two costs being above some threshold.
We conjecture that achieving such smooth tradeoffs for TRIANGLES is impossible.

3 The Polynomial Evaluation Protocol and Its Applications

We shall present a two-round SIP for an abstract data stream problem called “polynomial evaluation,” where
the input consists of a multivariate polynomial described implicitly, as a table of values, followed by a point
at which the polynomial must be evaluated. Without space constraints, this problem simply amounts to
interpolation followed by direct evaluation, but our goal is to obtain a protocol where the verifier uses space

6

Notation:
•  R[k, A] is class of functions solved by (standard) randomized k-message

protocols of polylog cost, where Alice speaks first.
•  OMA[k] , OIP[k], and OIP+

[k] are classes of functions solved by polylog
cost protocols at k’th level of OMA, OIP, and OIP+ hierarchies.

A Communication Complexity Zoo

Main Findings
�  Any OIP[2] or OIP[3] protocol for DISJOINTNESS has cost

�  i.e. There is no three-message SIP of polylog cost for
DISJOINTNESS using “known techniques”.

�  OIP[4] is equivalent to AMcc, a communication class beyond
the reach of current lower bound methods.
�  i.e. Proving lower bounds on 4-message SIPs may be challenging.

�  Generic round-reduction impossible in the OIP hierarchy.
�  In contrast, AM[O(1)]=AM[2] in classical interactive proofs.

R[2, B] OIP[2]

�  Suppose we are given a 2-message randomized communication
protocol Q1 of cost C, with Bob speaking first.

�  We give an OIP[2] protocol Q2 that simulates Q1 with a
quadratic blowup in cost.

Alice(Q2) and Bob(Q2) first toss the coins they would use in Q1.
Alice(Q2) then runs the “INDEX” protocol on the 2C-dimensional
vector x whose ith entry is what Alice(Q1)’s response to Bob(Q1)
would be if Bob(Q1)’s message to Alice(Q1) was i.
INDEX protocol must be run over field F of size ~2C, so total cost
is O(C log|F|)=O(C2).

⊆

R[2, B] OIP[2]

�  Suppose we are given a 2-message randomized communication
protocol Q1 of cost C, with Bob speaking first.

�  We give an OIP[2] protocol Q2 that simulates Q1 with a
quadratic blowup in cost.

�  Alice(Q2) and Bob(Q2) first toss the coins they would use in Q1.
�  Alice(Q2) then runs our (Generalized) INDEX protocol on the

2C-dimensional vector x whose ith entry is what Alice(Q1)’s
response to Bob(Q1) would be if Bob(Q1)’s message to Alice(Q1)
was i.

�  Our INDEX protocol must be run over field F of size ~2C, so
total cost is O(C log|F|)=O(C2).

⊆

OIP[2] R[2, B]: Part 1

�  Suppose we are given an OIP[2] protocol Q2 of cost C.
�  We give an R[2, B] protocol Q1 that simulates Q2 with a quadratic

blowup in cost.
Alice(Q1) and Bob(Q1) first toss the “secret coins” they would use
in Q2. Say these coins come from a distribution D.
Bob(Q1) can then determine the message mB that Bob(Q2) would
send to Merlin.
Let DmB

denote D conditioned on the event that Bob(Q2)’s message
to Merlin is mB.
Alice(Q1) and Bob(Q1)’s goal then becomes:

Determine whether there exists a message mM that Merlin could send
in Q2 that would “cause Alice(Q2) and Bob(Q2) to output 1 with high
probability if their secret coins come from distribution DmB

.

⊆

OIP[2] R[2, B]: Part 1

�  Suppose we are given an OIP[2] protocol Q2 of cost C.
�  We give an R[2, B] protocol Q1 that simulates Q2 with a quadratic

blowup in cost.
�  Alice(Q1) and Bob(Q1) first toss the “secret coins” they would

use in Q2. Say these coins come from a distribution D.
�  Bob(Q1) can then determine the message mB that Bob(Q2) would

send to Merlin.
�  Let DmB

denote D conditioned on the event that Bob(Q2)’s
message to Merlin is mB.

�  Alice(Q1) and Bob(Q1)’s goal then becomes:
Determine whether there exists a message mM that Merlin could send
in Q2 that would cause Alice(Q2) and Bob(Q2) to output 1 with high
probability if their secret coins come from distribution DmB

.

⊆

OIP[2] R[2, B]: Part 2

�  Bob(Q1) takes h=O(C) random samples r1, … rh from the
distribution DmB

, and sends them all to Alice.
�  Bob can do this because mB does not depend on Alice’s input!

�  For each ri, Alice(Q1) tells Bob(Q1) what message Alice(Q2)
would send given secret randomness ri.

�  Now that Bob(Q1) knows what Alice(Q2) would say for all of the
ri’s, he iterates over all possible Merlin messages mM and outputs
1 iff there is some mM that would cause Bob(Q2) to accept for a
majority of the ri’s.

⊆

Thank you!

So how Powerful Are O(1)-Round SIPs?
�  INDEX has a two-message protocol of logarithmic cost.
�  Does a similar protocol exist for “harder” problems such as

DISJOINTNESS?
�  Answer: Probably not.

Left-overs
Given a d-variate polynomial and line we let be the

univariate polynomial and call this the restriction
of to

g λ, g
λ

g(hλ),
g λ.

The Polynomial Agreement Protocol
�  Suppose a data stream specifies a v-variate

polynomial g over field F, followed by a point i in
F^v. Goal is to evaluate g(i).

�  As long as V can evaluate g at a random point r in
space s, there is a two-message protocol of space cost s
and comm. cost O(deg(g)log|F|) for this problem.

Median
�  Input: a stream of numbers <x1, …, xm> from a

universe of size n.
�  Let Nj = |{j:xj<i}|.
�  Goal: output a number i such that Ni-1<m/2 and

Ni+1>m/2.

Reducing Median to Poly. Agreement
�  “Treat” stream update xj as an insertion of items xj,

xj+1, …, n. This creates a “derived stream” S such
that the frequency of item j in S is exactly Nj.

�  Let y be the n-dimensional vector such that yj is the
frequency of item j in

�  At end of stream, P sends a claimed median i.
�  To check that i is a median, it suffices for V to check

that, in the derived stream

