ENLP Lecture 23:
Dependency Parsing

Shira Wein

With slides/text from Nathan Schneider, Harry
Eldridge, Chris Manning

April 20, 2021

|I'O() I
(dobj)

t
Y

[prefer the morning flight through Denver

Language Is complicated!
Dependency parsing can help
clarify what is connected to what

Example Dependency Parse

pcomp dobj

BR2BK

India won the world cup by beating Lanka

From slides on 3/25

SaW

|
fish

|
with

What Is a dependency
grammar?

Dependency: a relation between two words, where one is
the head and the other is the dependent

Every word depends on exactly one other word (except
for the root word)

Build a dependency tree by determining which word every
word depends on

Normally binary asymmetric relations

How dependency parses

work

Tree

Every word has exactly one parent (one edge pointing to it)

Label edges to indicate the head — modifier relations

Usually one word is the root

Don’t want cycles

l

kids

5

Sd

birds

POBJ
1 \~L

with

fish

Important relations (for
English)

e (Nominal) Subject

e Direct Object

e Determiner

e Adjective Modifier

e Adverbial Modifier

e etc.

Important relations (for
English)

* There are many different flavors of dependency parses.

e Stanford Dependencies;
Universal Dependencies (UDv1, UDv2); ...

e Some differences in structure (head rules)
e Different relation label sets
e Examples on different slides use different flavors.

e For this class, the particular framework is not important.

5

Example of language being
complicated:

“| saw a girl with a telescope”

| saw a girl with a telescope

with = having with = using

Image from https://www.cellstrat.com/
2020/04/16/dependency-parsing-for-nip/

With can connect to seeing or to the
girl: two separate dependency parses

de e
v ‘v l L \ l ‘ v
saw a girl with a telescope
de e
v ‘ v l ‘V \4 l ‘ v
saw a girl with a telescope

oWhich is with as in “using”?

det

l

1 a

‘ \4

telescope

With as in using— “with a telescope” modifies “saw”

=
‘ v l L v
saw a girl wit]

G
‘ v l ‘v v
saw a oirl wit]

det

l

1 a

‘ \4

telescope

With as in having— “with a telescope” modifies “girl”

11

Dependency parsing Is
useful

Resolves attachment ambiguities that can matter for
meaning

e Grammatical structure of a sentence based on the
relationships (dependencies) between the words

Syntactic dependencies can be close to semantic relations

Language agnostic

For what types of tasks might this be useful?

12

Information Extraction

e Can be used in information extraction to capture relationships
e Entity linking: maps entities to database entries

 Relation extraction: mines text to find relationships between
entities

T

mmmm [m|m [

British officials in Tehran have been meeting with their lranian counterparts

13

Machine Translation

 When incorporated as linguistic prior during training into neural
machine translation, improves performance

e https://www.aclweb.org/anthology/P17-2012/

e (Not standard practice to incorporate dependencies in MT)

Learning to Parse and Translate Improves Neural Machine Translation

Akiko Eriguchi’, Yoshimasa Tsuruoka', and Kyunghyun Cho!
"The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
{eriguchi, tsuruoka}@logos.t.u-tokyo.ac.]jp
*New York University, New York, NY 10012, USA

kyunghyun.cho@nyu.edu

14

https://www.aclweb.org/anthology/P17-2012/

Before we try it
ourselves, some detalls
on edges & heads

Can arrows cross?

Projectivity

® A dependency parse is projective if every subtree is a
contiguous span of the sentence

® |.e. Projective = there are no crossing edges

el

A hearing

(

o =

the Issue

RoOT
ey

Is scheduled today

Is this tree projective?

16

Can arrows cross?
Projectivity

® A dependency parse is projective if every subtree is a
contiguous span of the sentence

® |.e. Projective = there are no crossing edges

TMP

'ROOT |
ATT A

o e Bt O Y i T

A hearing is scheduled on the issue toaay

How about this one?
17

Heads

* Some dependency parse flavors prioritize content words
as heads (auxiliaries, prepositions, etc. are modifiers)

nsubj

4 aux \ nmod

—

Little kids were always watching birds with fish

e Other flavors use functional heads (prepositions head
their objects, auxiliaries head main verbs, ...)

vcomp

—N

Little kids were always watching birds with fish

18

1. Root?

The

Let’s try one

dog bit the

boy

The

Let’s try one

dog bit the

boy

2. Relation to dog?

The

Let’s try one

Root

dog bit the

21

boy

The

Let’s try one

nsubj

/N

dog bit the

boy

3. Dog’s relation to the?

The

Let’s try one

Root

nsubj

dog bit the boy

23

Let’s try one

Root

det nsubj

/NN

The dog bit the

boy

Let’s try one

4. Should bit be a parent of “the” or “boy”? Relation?

Root

det nsubj

The dog bit the

25

boy

Let’s try one

Root dobj

det nsubj /\

The dog bit the boy

Let’s try one

5. Relation between “Boy” and “the”

Root dobj

det nsubj

The dog bit the boy

27

Let’s try one

Root dobj

det nsubj
j////’\\\\\\\j////’\\\\\\\ det

The dog bit the boy

Transition-based Parsing
(sort of tricky, part of A5)

Transition-based Parsing

* Process words from left to right, deciding if the two words
should be attached

 Builds a dependency parse using a stack and buffer
* |nput buffer: words of the sentence
e Stack: to manipulate the words

 Dependency relations: list of relations that culminate
in the dependency parse

30

[STACK] [INPUT BUFFER] [RELATIONS]

[root] [these, are, words, in, a,
sentence]

Create a dependency between ‘root’
and the word after ‘root’ on the stack
if the word on the stack IS the root

31

Arc-Standard Approach

* Build relations between words using ARCS and remove word from stack
once you have identified the word’s parent

* LEFTARC: the word at the top of the stack is the head of the word
beneath it

e Remove second word from stack (the word you just made a
dependent of the top word)

* RIGHTARC: (the reverse) the second word on the stack is the head of
the word on top of the stack

e Remove top word from stack
 SHIFT: move the word from input buffer to the stack

32

Arc-Standard Approach

 Note: The root cannot be a dependent, so LEFTARC
cannot be applied when the root is the second word In

the stack

* There must be at least 2 words in the stack to apply
LEFTARC or RIGHTARC

33

Example of transition-based
parsing

dobj
Root

nsubj

/N AN

She gave me the book

34

[STACK] [INPUT BUFFER] [RELATIONS]

[root] [She, gave, me, the, book]

35

[STACK] [INPUT BUFFER] [RELATIONS]

[root] [She, gave, me, the, book]

We need more words in the stack: SHIFT

36

[STACK] [INPUT BUFFER] [RELATIONS]
[root] [She, gave, me, the, book]

[root, She] [gave, me, the book]

37

[STACK] [INPUT BUFFER] [RELATIONS]
[root] [She, gave, me, the, book]

[root, She] [gave, me, the, book]

She is not the root, We need more words in the stack: SHIFT

38

S

S

[STACK]
[root]
[root, She]j

[root, She, gave]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]

[me, the, book]

39

[RELATIONS]

[STACK] [INPUT BUFFER] [RELATIONS]

[root] [She, gave, me, the, book]
S
[root, She]j [gave, me, the, book]
S
[root, She, gave] [me, the, book]

Gave is the head of She.
Word on top of stack is head of second word on stack: LEFTARC

Remove She from stack and add relation. No change to input buffer

40

S

S

LA

[STACK]
[root]
[root, She]j
[root, She, gave]

[root, gave]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

Ime, the, book]

41

[RELATIONS]

(She <- gave)

[STACK] [INPUT BUFFER] [RELATIONS]

[root] [She, gave, me, the, book]
S [root, She]j [gave, me, the, book]
S [root, She, gave] [me, the, book]
=4 [root, gave] Ime, the, bookK] (She <- gave)

Gave is the root. We don’t want to remove it from the stack yet because we need to
build more relations with the word. So, instead of building an ARC right now between
root and gave, we SHIFT

42

S

S

LA

S

[STACK]
[root]
[root, She]j
[root, She, gave]
[root, gave]

[root, gave, me]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

43

[RELATIONS]

(She <- gave)

[STACK] [INPUT BUFFER] [RELATIONS]

[root] [She, gave, me, the, book]
S [root, She]j [gave, me, the, book]
S [root, She, gave] [me, the, book]
= [root, gave] [me, the, book] (She <- gave)
S [root, gave, me] [the, book]

Gave is the head of me. RIGHTARC

Remove second word from stack, add relation, no change to input buffer.

44

[STACK]

[root]

S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA

[root, gave]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

45

[RELATIONS]

(She <- gave)

(gave -> me)

[STACK]

[root]

S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA

[root, gave]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

Still don’t want to get rid of ‘gave’

SHIFT

46

[RELATIONS]

(She <- gave)

(gave -> me)

[STACK]

[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S

[root, gave, the]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

[booK]

47

[RELATIONS]

(She <- gave)

(gave -> me)

[STACK]

[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S

[root, gave, the]

[INPUT BUFFER]

[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[booK]

Any relation between ‘gave’ and ‘the’?

No.

SHIFT

48

[RELATIONS]

(She <- gave)

(gave -> me)

[STACK]

[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S
[root, gave, the]
S

[root, gave, the, book]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

[booK]

[]

49

[RELATIONS]

(She <- gave)

(gave -> me)

[STACK]

[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S
[root, gave, the]
S

[root, gave, the, book]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

[booK]

[]

‘Book’ is head of ‘the’: LEFTARC
50

[RELATIONS]

(She <- gave)

(gave -> me)

[STACK]

[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S
[root, gave, the]
S
[root, gave, the, book]
LA

[root, gave, book]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

[booK]

[]

51

[RELATIONS]

(She <- gave)

(gave -> me)

(the <- book)

[STACK]

[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S
[root, gave, the]
S
[root, gave, the, book]
LA

[root, gave, book]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

[booK]

[]

‘Gave’ is head of ‘book’: RIGHTARC

52

[RELATIONS]

(She <- gave)

(gave -> me)

(the <- book)

[STACK]
[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S
[root, gave, the]
S
[root, gave, the, book]
LA
[root, gave, book]
RA

[root, gave]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

[booK]

[]

53

[RELATIONS]

(She <- gave)

(gave -> me)

(the <- book)

(gave -> book)

[STACK]
[root]
S
[root, She]j
S
[root, She, gave]
LA
[root, gave]
S
[root, gave, me]
RA
[root, gave]
S
[root, gave, the]
S
[root, gave, the, book]
LA
[root, gave, book]
RA

[root, gave]

[INPUT BUFFER]

[She, gave, me, the, book]

[gave, me, the, book]
[me, the, book]
[me, the, book]

[the, book]
[the, book]

[booK]

[]

No more words left in buffer,
can finally add ARC between
root and gave: RIGHTARC

54

[RELATIONS]

(She <- gave)

(gave -> me)

(the <- book)

(gave -> book)

[STACK]
[root]

S

[root, She]j
S

[root, She, gave]

LA

[root, gave]
S

[root, gave, me]

RA

[root, gave]
S

[root, gave, the]
S
[root, gave, the, book]
LA
[root, gave, book]

RA

[root, gave]
RA

[root]

[INPUT BUFFER]
[She, gave, me, the, book]
[gave, me, the, book]
[me, the, book]

[me, the, book]

[the, book]

[the, book]

[booK]

[]

55

[RELATIONS]

(She <- gave)

(gave -> me)

(the <- book)

(gave -> book)

(root -> gave)

[STACK] [INPUT BUFFER] [RELATIONS]

[root] [She, gave, me, the, book]

We have (exactly) encoded the parse tree as a sequence
of {S, LA, RA} actions!

(Would also need to specify relation labels in the LA, RA

actions or post hoc.)

Transition-based parsing = iteratively:
(1) consult the Oracle (algorithm giving next action)
(2) modify the Configuration (state of stack, buffer,
relations) according to the action

Arc-Standard Parsing

With the 3 Arc-Standard actions {S, LA, RA}:
= How many transitions to parse a sentence of N words?

» 2*N: for each word, once to shift + once to attach to a head and remove from
stack (LA or RA).

== Can these 3 types of actions build any tree?

> Only projective trees: only adding edges at the top of the stack & permanently
removing a word from the stack once attaching it to its parent ensures that all
subtrees are contiguous

> With a richer set of actions, can get non-projective trees or even graphs
= How would you implement an Oracle (choose the next action at test time)?

>~ This brings us to...

57

Statistical
Dependency Parsing

Statistical Dependency
Parsing

Can be done by training a classifier to predict each
action, using data from Treebanks

 Neural Networks, SVM, logistic regression
Advanced Methods: Arc Eager transition system

MaltParser: linear time parsing, predicted by a
discriminative classifier

Possible features? POS tags, word at the top of the
stack, etc. — we’ll come back to this in a second

59

Training

e Can automatically convert constituency treebanks (like
the Penn Treebank) to dependencies

60

Training

e Or, can use dependency treebanks like Universal Dependencies (available
in many languages)

e http://universaldependencies.org

punct
«nsubj:pass case
det~NoUN" | [AUx* [euxPass {vere") 0P| (DET" ' g_"INOUN PUNCT
—— —— ——
The dog was chased by the cat
punct

nsubj:pass obl» ’—_'
[NOUN"™ PRON [PRON" | *P1P2** \vERE™ DP AP ““**NouN"] JPUNCT
queTo npecneapatle OT KOTKaTa

nsubj:pass punct
mNouN' | [Aux VP2 \vEre Y °°"(NoUNT] PUNCT)
— —— —_—— —— A
Pes byl honén koCkou

punct

. obl ’—_l
Nsubjpass\vererY BRI " \NOUN"] PPUNCT
—_—— — Y —_— S
Hunden jagades av katten

Image from https://universaldependencies.org/
61

introduction.html

http://universaldependencies.org
https://universaldependencies.org/introduction.html
https://universaldependencies.org/introduction.html
https://universaldependencies.org/introduction.html

Evaluation

e Comparing against a gold standard:

e Accuracy = # correct dependencies / # of
dependencies

e Unlabeled Attachment Score (UAS): % of words
attached correctly (correct head)

 Labeled Attached Score (LAS): % of words

attached to the correct head with the correct relation
label

62

Conventional Feature
Representation

Stack Buffer
i ROOT has VBZ good_JJ j ; control NN
""""""" s,
He PRP
bi '
nary, spars€ o5 o h oo pl.olof1 o
B e, DO PPN PLOPAD]

Feature templates: usually a
combination of 1 ~ 3 elements from
the configuration.

sl.w = good A sl.t = JJ

_ s2.w = has A s2.t = VBZ A sl.w = good -
Indicator features * ;. .\, _ pRp A syt = VBZ A syt = JJ

® Sparse vector l.c(s.g.)..w :.Hc A l_q(s?).l — nsubj A sp.w = has

¢ Train ClaSSiﬁer on these VeCtOg§ Image from Chris Manning’s Stanford NLP slides

Why train a neural
dependency parser?

 Problems with conventional way:
e Sparse
* |ncomplete
 EXpensive computation

* |nstead, you can learn a dense and compact feature
representation (like word2vec)

64

Neural dependency parsing

 Chen and Manning 2014: https://www.aclweb.org/anthology/
D14-1082/

* Represents words as d-dimensional dense vectors (word embeddings!)

Softmax probabilities

Output layer y cross-entropy error will be
y = softmax(Uh + b,) back-propagated to the
embeddings. Parser UAS LAS sent. /s

Hidden layer h I

h = ReLU(Wx + b,) & E g MaltParser 89.8 87.2 469
MSTParser 91.4 88.1 10

Input layer x |()() (¢) ()()

lookup + concat 4 TurboParser 92.3 89.6 8
Stack @ Buffer C& M2014 92.0 89.7 654

..

65 Image from Chris Manning’s Stanford NLP slides

https://www.aclweb.org/anthology/D14-1082/
https://www.aclweb.org/anthology/D14-1082/

Further developments In
neural dependency parsing

This work was further developed and improved by others,
including in particular at Google

* Bigger, deeper networks with better tuned hyperparameters
* Beam search @

* Global, conditional random field (CRF)-style inference over
the decision sequence

Leading to SyntaxNet and the Parsey McParseFace model

Method _________[UAS____|LAS (PTBWS) 5D 3.3)

Chen & Manning 2014 92.0 89.7
Weiss et al. 2015 93.99 92.05
Andor et al. 2016 94.61 92.79

66 Slide from Chris Manning’s Stanford NLP slides

Biaffine Parser

A neural model a lot of people start with now is
Dozat & Manning (2017)

e https://arxiv.org/abs/1611.01734

Catalan Chinese Czech
Model UAS LAS UAS LAS UAS LAS

Andor et al. 92.67 89.83 84.72 80.85 8894 84.56

Deep Biaffine 94.69 92.02 88.90 8538 92.08 87.38
English German Spanish

Model UAS LAS UAS LAS UAS LAS

Andor et al. 93.22 9123 9091 89.15 92.62 89.95
Deep Biaffine 9521 93.20 9346 91.44 94.34 91.65

Table 5: Results on the CoNLL ’09 shared task datasets

67

https://arxiv.org/abs/1611.01734

Selected recent works

Universal Dependencies [linguistic motivation]

Marie-Catherine de Marneffe, Christopher D.
Manning, Joakim Nivre, Daniel Zeman

Meta-learning for fast cross-lingual adaptation in
dependency parsing

Anna Langedijk, Verna Dankers, Phillip Lippe,
Sander Bos, Bryan Cardenas Guevara, Helen
Yannakoudakis, Ekaterina Shutova

A Graph-based Model for Joint Chinese Word
Segmentation and Dependency Parsing

Hang Yan, Xipeng Qiu, Xuanjing Huang

Improved Dependency Parsing using Implicit Word

Universal Dependencies v2: An evergrowing
multilingual treebank collection [overview & data]

Connections Learned from Unlabeled Data

Wenhui Wang, Baobao Chang, Mairgup Mansur

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Jan Hajic¢, Christopher D. Manning,
Sampo Pyysalo, Sebastian Schuster, Francis
Tyers, Daniel Zeman

Zero-Shot Cross-Lingual Dependency Parsing
through Contextual Embedding Transformation

Haoran Xu, Philipp Koehn

Graph Convolution over Pruned Dependency
Trees Improves Relation Extraction

Yuhao Zhang, Peng Qi, Christopher D. Manning

Dependency Parsing of Code-Switching Data with
Cross-Lingual Feature Representation

Niko Partanen, Kyungtae Lim, Michael RieBler, Thierry

68 Poibeau

https://www.aclweb.org/anthology/2020.tacl-1.6.pdf
https://www.aclweb.org/anthology/2020.tacl-1.6.pdf
https://www.aclweb.org/anthology/D18-1311.pdf
https://www.aclweb.org/anthology/D18-1311.pdf
https://www.aclweb.org/anthology/W18-0201/
https://www.aclweb.org/anthology/W18-0201/
https://direct.mit.edu/coli/article/doi/10.1162/coli_a_00402/98516/Universal-Dependencies
https://arxiv.org/abs/2103.02212
https://arxiv.org/abs/2103.02212
https://www.aclweb.org/anthology/D18-1244/
https://www.aclweb.org/anthology/D18-1244/
https://arxiv.org/pdf/2104.04736.pdf
https://arxiv.org/pdf/2104.04736.pdf
https://www.aclweb.org/anthology/2020.lrec-1.497
https://www.aclweb.org/anthology/2020.lrec-1.497

Demos

* Stanza (from Stanford): http://stanza.run/

e AllenNLP (from Allen Institute for Al):
https://demo.allennlp.org/dependency-parsing

69

http://stanza.run/
https://demo.allennlp.org/dependency-parsing

Practice

1. For the sentence a b ¢ d e, what parse would the action sequence
SSSSRARALASLARA correspond to?

2. For a length-N sentence, what is the O(-) complexity of PCKY Constituency
Parsing vs. Arc-Standard Transition-Based Dependency Parsing?

> Space complexity: how large are the data structures?
> Time complexity: how many choices do we have to consider?
> Hint: You can introduce constants for relevant factors besides N.

3. Can Arc-Standard Transition-Based Parsing build any kind of tree (given the
right action sequence)? Explain.

Group 1: Q1 | Group 2: Q2 for CKY | Group 3: Q2 for transition-based | Group 4: Q3

70

