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Outline
• Words, probabilities → Features, weights 

• Geometric view: decision boundary 

• Perceptron 

• Generative vs. Discriminative 

• More discriminative models: Logistic regression/MaxEnt; 
SVM 

• Loss functions, optimization 

• Regularization; sparsity
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Perceptron Learner
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w ← 0 
for i = 1 … I: 
   for t = 1 … T: 

 select (x, y)t 

 # run current classifier 
 ŷ ← arg maxy′ wy′ᵀ Φ(x) 
  

 if ŷ ≠ y then # mistake 

  wy ← wy + Φ(x) 

            wŷ ← wŷ − Φ(x) 

return w

(assumes all 
classes have the 
same percepts)



Perceptron Learner
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X
Y

L

w

w ← 0 
for i = 1 … I: 
   for t = 1 … T: 

 select (x, y)t 

 # run current classifier 
 ŷ ←              ← x 
  

 if ŷ ≠ y then # mistake 

  wy ← wy + Φ(x) 

            wŷ ← wŷ − Φ(x) 

return w

(assumes all 
classes have the 
same percepts)

C decoding is a 
subroutine of learning



Perceptron Learner
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w

w ← 0 
for i = 1 … I: 
   for t = 1 … T: 

 select (x, y)t 

 # run current classifier 
 ŷ ← sign(wᵀ Φ(x)) 
  

 if ŷ ≠ y then # mistake 

  w ← w + sign(y) · Φ(x) 

return w
(assumes all 

classes have the 
same percepts)

for binary classification  
single weight vector such that 
>0 → + class, <0 → − class



Perceptron Learner
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X
Y

L

w

w ← 0 
for i = 1 … I: 
   for t = 1 … T: 

 select (x, y)t 

 # run current classifier 
 ŷ ← arg maxy′ wᵀ Φ(x, y′) 
  

 if ŷ ≠ y then # mistake 

  w ← w + Φ(x, y) − Φ(x, ŷ) 
return w

if different classes 
have different 

percepts



work through example on the board
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x1 = “I thought it was great” 

x2 = “not so great” 

x3 = “good but not great”

y1 = + 

y2 = − 

y3 = +



Perceptron Learner
• The perceptron doesn’t estimate probabilities. It just adjusts weights up 

or down until they classify the training data correctly. 

‣ No assumptions of  feature independence necessary! ⇒ Better accuracy than NB 

• The perceptron is an example of  an online learning algorithm because it 
potentially updates its parameters (weights) with each training datapoint. 

• Classification, a.k.a. decoding, is called with the latest weight vector. 
Mistakes lead to weight updates. 

• One hyperparameter: I, the number of  iterations (passes through the 
training data). 

• Often desirable to make several passes over the training data. The number 
can be tuned. Under certain assumptions, it can be proven that the 
learner will converge.
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Perceptron: Avoiding overfitting
• Like any learning algorithm, the perceptron risks 

overfitting the training data. Two main techniques 
to improve generalization: 

‣ Averaging: Keep a copy of  each weight vector as it 
changes, then average all of  them to produce the final 
weight vector. Daumé chapter has a trick to make this 
efficient with large numbers of  features. 

‣ Early stopping: Tune I by checking held-out accuracy 
on dev data (or cross-val on train data) after each 
iteration. If  accuracy has ceased to improve, stop 
training and use the model from iteration I − 1.
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http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf


Generative vs. Discriminative
• Naïve Bayes allows us to classify via the joint probability of  x and y: 

‣ p(y | x) ∝ p(y) Πw ∈ x p(w | y) 

               = p(y) p(x | y) (per the independence assumptions of  the model) 

                    = p(y, x) (chain rule) 

‣ This means the model accounts for BOTH x and y. From the joint distribution 
p(x,y) it is possible to compute p(x) as well as p(y), p(x | y), and p(y | x). 

• NB is called a generative model because it assigns probability to 
linguistic objects (x). It could be used to generate “likely” language 
corresponding to some y. (Subject to its naïve modeling assumptions!) 

‣ (Not to be confused with the “generative” school of  linguistics.) 

• Some other linear models, including the perceptron, are discriminative: 
they are trained directly to classify given x, and cannot be used to 
estimate the probability of  x or generate x | y.
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Many possible decision boundaries

x y

Which one is best?

?

?
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Max-Margin Methods (e.g., SVM)

x y

Choose decision 
boundary that is 
≈halfway between 
nearest positive and 
negative examples

{margin



Max-Margin Methods

• Support Vector Machine (SVM): most popular 
max-margin variant 

• Closely related to the perceptron; can be 
optimized (learned) with a slight tweak to the 
perceptron algorithm. 

• Like perceptron, discriminative, non-
probabilistic.
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Maximum Entropy (MaxEnt) a.k.a. 
(Multinomial) Logistic Regression

• What if  we want a discriminative classifier with probabilities? 

‣ E.g., need confidence of  prediction, or want the full distribution over possible classes 

• Wrap the linear score computation (wᵀ Φ(x, y′)) in the softmax function:  

‣ log p(y | x) =    exp(wᵀ Φ(x, y))       = wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′)) 
                              Σy′ exp(wᵀ Φ(x, y′)) 

‣ Binary case:  
log p(y=1 | x) =                 exp(wᵀ Φ(x, y=1)) 

                                   exp(wᵀ Φ(x, y=1)) + exp(wᵀ Φ(x, y=0)) 

                        =     exp(wᵀ Φ(x, y=1))           (fixing wᵀ Φ(x, y=0) = 0) 

                                   exp(wᵀ Φ(x, y=1)) + 1 

• MaxEnt classifiers are a special case of  MaxEnt a.k.a. log-linear models. 

‣ Why the term “Maximum Entropy”? See Smith Linguistic Structure Prediction, appendix C.
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log

log

score can be negative; exp(score) is always positive

Denominator = normalization (makes probabilities sum to 1).  
Sum over all classes ⇒ same for all numerators ⇒ can be ignored at classification time.



Objectives
• For all linear models, the classification rule or decoding 

objective is: y ← arg maxy′ wᵀ Φ(x, y′) 

‣ Objective function = function for which we want to find the optimum 
(in this case, the max) 

• There is also a learning objective for which we want to find the 
optimal parameters. Mathematically, NB, MaxEnt, SVM, and 
perceptron all optimize different learning objectives. 

‣ When the learning objective is formulated as a minimization 
problem, it’s called a loss function. 

‣ A loss function scores the “badness” of  the training data under any 
possible set of  parameters. Learning = choosing the parameters 
that minimize the badness.
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Objectives
• Naïve Bayes learning objective: joint data likelihood 

‣ p* ← arg maxp Ljoint(D; p) 
       = arg maxp Σ(x, y) ∈ D log p(x,y) = arg maxp Σ(x, y) ∈ D log (p(y)p(x | y)) 

‣ It can be shown that relative frequency estimation (i.e., count and divide, no 
smoothing) is indeed the maximum likelihood estimate 

• MaxEnt learning objective: conditional log likelihood 

‣ p* ← arg maxp Lcond(D; p) 
       = arg maxp Σ(x, y) ∈ D log p(y|x)  
w  ← arg maxw Σ(x, y) ∈ D wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′)) [2 slides ago] 

‣ This has no closed-form solution. Hence, we need an optimization algorithm 
to try different weight vectors and choose the best one. 

‣ With thousands or millions of  parameters—not uncommon in NLP—it may 
also overfit.
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Objectives
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In purple is the hinge loss, in blue is the log loss; in red is the
“zero-one” loss (error).
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log loss (MaxEnt)

hinge loss (perceptron)

0–1 loss (error)

wᵀ Φ(x, y′)

better

worse

Visualizing different loss functions for binary classification



Objectives
• Why not just penalize error directly if  that’s how we’re going to evaluate 

our classifier (accuracy)? 

‣ Error is difficult to optimize! Log loss and hinge loss are easier. Why? 

✴ Because they’re differentiable. 

✴ Can use stochastic (sub)gradient descent (SGD) and other gradient-based 
optimization algorithms (L-BFGS, AdaGrad, …). There are freely available 
software packages that implement these algorithms. 

✴ With supervised learning, these loss functions are convex: local optimum = 
global optimum (so in principle the initialization of  weights doesn’t matter). 

✴ The perceptron algorithm can be understood as a special case of  
subgradient descent on the hinge loss! 

• N.B. I haven’t explained the math for the hinge loss (perceptron) or the 
SVM. Or the derivation of  gradients. See further reading links if  you’re 
interested.
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A likelihood surface
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Christopher	Manning

A	likelihood	 surface

figure from Chris Manning

Visualizes the likelihood objective (vertical axis) as a function of 2 parameters. 
Likelihood = maximization problem. Flip upside down for the loss.  

 
Gradient-based optimizers choose a point on the surface, look at its curvature, 

and then successively move to better points.



Regularization
• Better MaxEnt learning objective: regularized conditional log likelihood 

‣ w* ← arg maxw −λR(w) + Σ(x, y) ∈ D wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′)) 

• To avoid overfitting, the regularization term (“regularizer”) −λR(w) penalizes complex 
models (i.e., parameter vectors with many large weights). 

‣ Close relationship to Bayesian prior (a priori notion of  what a “good” model looks like if  there is 
not much training data). Note that the regularizer is a function of  the weights only (not the 
data)! 

• In NLP, most popular values of  R(w) are the ũ1 norm (“Lasso”) and the ũ2 norm (“ridge”): 

‣ ũ2  = ‖w‖2 = (Σi wi²)−1/2 encourages most weights to be small in magnitude 

‣ ũ1  = ‖w‖1 = Σi |wi| encourages most weights to be 0 

‣ λ determines the tradeoff  between regularization and data-fitting. Can be tuned on dev data. 

• SVM objective also incorporates a regularization term. Perceptron does not (hence, 
averaging and early stopping).
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Sparsity
• ũ1 regularization is a way to promote model sparsity: many weights are 

pushed to 0. 

‣ A vector is sparse if  (# nonzero parameters) ≪ (total # parameters). 

‣ Intuition: if  we define very general feature templates—e.g. one feature per word 
in the vocabulary—we expect that most features should not matter for a 
particular classification task. 

• In NLP, we typically have sparsity in our feature vectors as well. 

‣ E.g., in WSD, all words in the training data but not in context of  a particular 
token being classified are effectively 0-valued features. 

‣ Exception: dense word representations popular in recent neural network 
models (we’ll get to this later in the course). 

• Sometimes the word “sparsity” or “sparseness” just means “not very 
much data.”
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Summary: Linear Models
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kind of model loss function
learning 

algorithm
avoiding 

overfitting

Naïve Bayes
Probabilistic, 

generative
Likelihood Closed-form 

estimation
Smoothing 

Logistic regression 
(MaxEnt)

Probabilistic, 
discriminative

Conditional 
likelihood

Optimization Regularization 
penalty

Perceptron
Non-probabilistic, 

discriminative
Hinge Optimization Averaging; 

Early stopping

SVM (linear kernel)
Non-probabilistic, 

discriminative
Max-margin Optimization Regularization 

penalty

Classifier: y ← arg maxy′ wᵀ Φ(x, y′)



Take-home points
• Feature-based linear classifiers are helpful for NLP tasks where interpretability is 

important. 

‣ You define the features, an algorithm chooses the weights. Some classifiers then exponentiate 
and normalize to give probabilities. 

‣ More features ⇒ more flexibility, also more risk of  overfitting. Because we work with large 

vocabularies, not uncommon to have millions of  features. 

• Learning objective/loss functions formalize training as choosing parameters to optimize a 
function. 

‣ Some model both the language and the class (generative); some directly model the class 
conditioned on the language (discriminative). 

‣ In general: Generative ⇒ training is cheaper, but lower accuracy.  

Discriminative ⇒ higher accuracy with sufficient training data and computation (optimization). 

• Some models, like naïve Bayes, have a closed-form solution for parameters. Learning is 
cheap! 

• Other models require fancier optimization algorithms that may iterate multiple times over 
the data, adjusting parameters until convergence (or some other stopping criterion). 

‣ The advantage: fewer modeling assumptions. Weights can be interdependent.
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Which linear classifier to use?

• Fast and simple: naïve Bayes 

• Very accurate, still simple: perceptron 

• Very accurate, probabilistic, more complicated to implement: MaxEnt 

• Potentially best accuracy, more complicated to implement: SVM 

• All of  these: watch out for overfitting! 

• Check the web for free and fast implementations,  
e.g. scikit-learn, SVMlight 

• Later in the course, we’ll also see nonlinear models (neural networks)
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Further Reading:  
Basics & Examples

• Manning: features in linear classifiers 
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
FeatureClassifiers.pdf  

• Goldwater: naïve Bayes & MaxEnt examples 
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf  

• O’Connor: MaxEnt—incl. step-by-step examples, comparison to naïve 
Bayes 
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf  

• Daumé: “The Perceptron” (A Course in Machine Learning, ch. 3) 
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf   

• Neubig: “The Perceptron Algorithm” 
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf  
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Further Reading:  
Advanced

• Neubig: “Advanced Discriminative Learning”—MaxEnt w/ derivatives, SGD, 
SVMs, regularization  
http://www.phontron.com/slides/nlp-programming-en-06-
discriminative.pdf  

• Manning: generative vs. discriminative, MaxEnt likelihood function and 
derivatives 
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
MEMMs-Smoothing.pdf, slides 3–20 

• Daumé: linear models  
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf   

• Smith: A variety of  loss functions for text classification 
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-
slides.pdf  & http://courses.cs.washington.edu/courses/cse517/16wi/
slides/tc-advanced-slides.pdf  
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Evaluating Multiclass 
Classifiers  

and Retrieval Algorithms
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Accuracy
• Assume we are disambiguating word senses such 

that every token has 1 gold sense label. 

• The classifier predicts 1 label for each token in the 
test set. 

• Thus, every test set token has a predicted label 
(pred) and a gold label (gold). 

• The accuracy of  our classifier is just the % of  
tokens for which the predicted label matched the 
gold label: #pred=gold/#tokens
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Precision and Recall
• To measure the classifier with respect to a certain 

label y, and there are >2, we distinguish precision and 
recall: 

‣ precision = proportion of  times the label was predicted 
and that prediction matched the gold: #pred=gold=y/#pred=y 

‣ recall = proportion of  times the label was in the gold 
standard and was recovered correctly by the classifier: 
#pred=gold=y/#gold=y 

• The harmonic mean of  precision and recall, called F1-
score, balances between the two.  
F1 = 2*precision*recall / (precision + recall)
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Evaluating Retrieval Systems
• Precision/Recall/F-score are also useful for 

evaluating retrieval systems. 

• E.g., consider a system which takes a word as input 
and is supposed to retrieve all rhymes. 

• Now, for a single input (the query), there are often 
many correct outputs. 

• Precision tells us whether most of  the given outputs 
were valid rhymes; recall tells us whether most of  
the valid rhymes in the gold standard were recovered.
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Rhymes for “hinge”
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge



Rhymes for “hinge”
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive 
(Type I error)



Rhymes for “hinge”
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive 
(Type I error)

False Negative 

(Type II error)



Rhymes for “hinge”
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive 
(Type I error)

False Negative 

(Type II error) Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Correctly predicted =  
True Positive 

All other words = 
True Negative



Precision & Recall
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binge 
cringe 
fringe 
hinge 

impinge 
infringe 
syringe 
tinge 

twinge 
unhinge

Gold System

klinge 
minge 
vinje

ainge

False Positive 
(Type I error)

False Negative 

(Type II error)

Correctly predicted =  
True Positive 

All other words = 
True Negative

Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Precision = TP/(TP+FP)  
= 10/11 = 91%

Recall = TP/(TP+FN)  
= 10/13 = 77%

F1 = 2·P·R/(P+R) = 83%


