
Linear Models for Classification:
Discriminative Learning

(Perceptron, SVMs, MaxEnt)
Nathan Schneider

(some slides borrowed from Chris Dyer)
ENLP | 23 February 2021

23

Outline
• Words, probabilities → Features, weights

• Geometric view: decision boundary

• Perceptron

• Generative vs. Discriminative

• More discriminative models: Logistic regression/MaxEnt;
SVM

• Loss functions, optimization

• Regularization; sparsity

24

previous lecture

this lecture

Perceptron Learner

25

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:

 select (x, y)t

 # run current classifier
 ŷ ← arg maxy′ wy′ᵀ Φ(x)

 if ŷ ≠ y then # mistake

 wy ← wy + Φ(x)

 wŷ ← wŷ − Φ(x)

return w

(assumes all
classes have the
same percepts)

Perceptron Learner

26

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:

 select (x, y)t

 # run current classifier
 ŷ ← ← x

 if ŷ ≠ y then # mistake

 wy ← wy + Φ(x)

 wŷ ← wŷ − Φ(x)

return w

(assumes all
classes have the
same percepts)

C decoding is a
subroutine of learning

Perceptron Learner

27

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:

 select (x, y)t

 # run current classifier
 ŷ ← sign(wᵀ Φ(x))

 if ŷ ≠ y then # mistake

 w ← w + sign(y) · Φ(x)

return w
(assumes all

classes have the
same percepts)

for binary classification
single weight vector such that
>0 → + class, <0 → − class

Perceptron Learner

28

X
Y

L

w

w ← 0
for i = 1 … I:
 for t = 1 … T:

 select (x, y)t

 # run current classifier
 ŷ ← arg maxy′ wᵀ Φ(x, y′)

 if ŷ ≠ y then # mistake

 w ← w + Φ(x, y) − Φ(x, ŷ)
return w

if different classes
have different

percepts

work through example on the board

29

x1 = “I thought it was great”

x2 = “not so great”

x3 = “good but not great”

y1 = +

y2 = −

y3 = +

Perceptron Learner
• The perceptron doesn’t estimate probabilities. It just adjusts weights up

or down until they classify the training data correctly.

‣ No assumptions of feature independence necessary! ⇒ Better accuracy than NB

• The perceptron is an example of an online learning algorithm because it
potentially updates its parameters (weights) with each training datapoint.

• Classification, a.k.a. decoding, is called with the latest weight vector.
Mistakes lead to weight updates.

• One hyperparameter: I, the number of iterations (passes through the
training data).

• Often desirable to make several passes over the training data. The number
can be tuned. Under certain assumptions, it can be proven that the
learner will converge.

30

Perceptron: Avoiding overfitting
• Like any learning algorithm, the perceptron risks

overfitting the training data. Two main techniques
to improve generalization:

‣ Averaging: Keep a copy of each weight vector as it
changes, then average all of them to produce the final
weight vector. Daumé chapter has a trick to make this
efficient with large numbers of features.

‣ Early stopping: Tune I by checking held-out accuracy
on dev data (or cross-val on train data) after each
iteration. If accuracy has ceased to improve, stop
training and use the model from iteration I − 1.

31

http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

Generative vs. Discriminative
• Naïve Bayes allows us to classify via the joint probability of x and y:

‣ p(y | x) ∝ p(y) Πw ∈ x p(w | y)

 = p(y) p(x | y) (per the independence assumptions of the model)

 = p(y, x) (chain rule)

‣ This means the model accounts for BOTH x and y. From the joint distribution
p(x,y) it is possible to compute p(x) as well as p(y), p(x | y), and p(y | x).

• NB is called a generative model because it assigns probability to
linguistic objects (x). It could be used to generate “likely” language
corresponding to some y. (Subject to its naïve modeling assumptions!)

‣ (Not to be confused with the “generative” school of linguistics.)

• Some other linear models, including the perceptron, are discriminative:
they are trained directly to classify given x, and cannot be used to
estimate the probability of x or generate x | y.

32

C
33

Many possible decision boundaries

x y

Which one is best?

?

?

C
34

Max-Margin Methods (e.g., SVM)

x y

Choose decision
boundary that is
≈halfway between
nearest positive and
negative examples

{margin

Max-Margin Methods

• Support Vector Machine (SVM): most popular
max-margin variant

• Closely related to the perceptron; can be
optimized (learned) with a slight tweak to the
perceptron algorithm.

• Like perceptron, discriminative, non-
probabilistic.

35

Maximum Entropy (MaxEnt) a.k.a.
(Multinomial) Logistic Regression

• What if we want a discriminative classifier with probabilities?

‣ E.g., need confidence of prediction, or want the full distribution over possible classes

• Wrap the linear score computation (wᵀ Φ(x, y′)) in the softmax function:

‣ log p(y | x) = exp(wᵀ Φ(x, y)) = wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′))
 Σy′ exp(wᵀ Φ(x, y′))

‣ Binary case:
log p(y=1 | x) = exp(wᵀ Φ(x, y=1))

 exp(wᵀ Φ(x, y=1)) + exp(wᵀ Φ(x, y=0))

 = exp(wᵀ Φ(x, y=1)) (fixing wᵀ Φ(x, y=0) = 0)

 exp(wᵀ Φ(x, y=1)) + 1

• MaxEnt classifiers are a special case of MaxEnt a.k.a. log-linear models.

‣ Why the term “Maximum Entropy”? See Smith Linguistic Structure Prediction, appendix C.

36

log

log

log

score can be negative; exp(score) is always positive

Denominator = normalization (makes probabilities sum to 1).
Sum over all classes ⇒ same for all numerators ⇒ can be ignored at classification time.

Objectives
• For all linear models, the classification rule or decoding

objective is: y ← arg maxy′ wᵀ Φ(x, y′)

‣ Objective function = function for which we want to find the optimum
(in this case, the max)

• There is also a learning objective for which we want to find the
optimal parameters. Mathematically, NB, MaxEnt, SVM, and
perceptron all optimize different learning objectives.

‣ When the learning objective is formulated as a minimization
problem, it’s called a loss function.

‣ A loss function scores the “badness” of the training data under any
possible set of parameters. Learning = choosing the parameters
that minimize the badness.

37

Objectives
• Naïve Bayes learning objective: joint data likelihood

‣ p* ← arg maxp Ljoint(D; p)
 = arg maxp Σ(x, y) ∈ D log p(x,y) = arg maxp Σ(x, y) ∈ D log (p(y)p(x | y))

‣ It can be shown that relative frequency estimation (i.e., count and divide, no
smoothing) is indeed the maximum likelihood estimate

• MaxEnt learning objective: conditional log likelihood

‣ p* ← arg maxp Lcond(D; p)
 = arg maxp Σ(x, y) ∈ D log p(y|x)
w ← arg maxw Σ(x, y) ∈ D wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′)) [2 slides ago]

‣ This has no closed-form solution. Hence, we need an optimization algorithm
to try different weight vectors and choose the best one.

‣ With thousands or millions of parameters—not uncommon in NLP—it may
also overfit.

38

Objectives

39figure from Noah Smith

Hinge Loss for (x, `)

✓
max
`02L

w · �(x, `0)
◆
�w · �(x, `)

In the binary case:

−4 −2 0 2 4

0
1

2
3

4
5

score

lo
ss

In purple is the hinge loss, in blue is the log loss; in red is the
“zero-one” loss (error).

45 / 51

log loss (MaxEnt)

hinge loss (perceptron)

0–1 loss (error)

wᵀ Φ(x, y′)

better

worse

Visualizing different loss functions for binary classification

Objectives
• Why not just penalize error directly if that’s how we’re going to evaluate

our classifier (accuracy)?

‣ Error is difficult to optimize! Log loss and hinge loss are easier. Why?

✴ Because they’re differentiable.

✴ Can use stochastic (sub)gradient descent (SGD) and other gradient-based
optimization algorithms (L-BFGS, AdaGrad, …). There are freely available
software packages that implement these algorithms.

✴ With supervised learning, these loss functions are convex: local optimum =
global optimum (so in principle the initialization of weights doesn’t matter).

✴ The perceptron algorithm can be understood as a special case of
subgradient descent on the hinge loss!

• N.B. I haven’t explained the math for the hinge loss (perceptron) or the
SVM. Or the derivation of gradients. See further reading links if you’re
interested.

40

A likelihood surface

41

Christopher	Manning

A	likelihood	 surface

figure from Chris Manning

Visualizes the likelihood objective (vertical axis) as a function of 2 parameters.
Likelihood = maximization problem. Flip upside down for the loss.

Gradient-based optimizers choose a point on the surface, look at its curvature,

and then successively move to better points.

Regularization
• Better MaxEnt learning objective: regularized conditional log likelihood

‣ w* ← arg maxw −λR(w) + Σ(x, y) ∈ D wᵀ Φ(x, y) − log Σy′ exp(wᵀ Φ(x, y′))

• To avoid overfitting, the regularization term (“regularizer”) −λR(w) penalizes complex
models (i.e., parameter vectors with many large weights).

‣ Close relationship to Bayesian prior (a priori notion of what a “good” model looks like if there is
not much training data). Note that the regularizer is a function of the weights only (not the
data)!

• In NLP, most popular values of R(w) are the ũ1 norm (“Lasso”) and the ũ2 norm (“ridge”):

‣ ũ2 = ‖w‖2 = (Σi wi²)−1/2 encourages most weights to be small in magnitude

‣ ũ1 = ‖w‖1 = Σi |wi| encourages most weights to be 0

‣ λ determines the tradeoff between regularization and data-fitting. Can be tuned on dev data.

• SVM objective also incorporates a regularization term. Perceptron does not (hence,
averaging and early stopping).

42

Sparsity
• ũ1 regularization is a way to promote model sparsity: many weights are

pushed to 0.

‣ A vector is sparse if (# nonzero parameters) ≪ (total # parameters).

‣ Intuition: if we define very general feature templates—e.g. one feature per word
in the vocabulary—we expect that most features should not matter for a
particular classification task.

• In NLP, we typically have sparsity in our feature vectors as well.

‣ E.g., in WSD, all words in the training data but not in context of a particular
token being classified are effectively 0-valued features.

‣ Exception: dense word representations popular in recent neural network
models (we’ll get to this later in the course).

• Sometimes the word “sparsity” or “sparseness” just means “not very
much data.”

43

Summary: Linear Models

44

kind of model loss function
learning

algorithm
avoiding

overfitting

Naïve Bayes
Probabilistic,

generative
Likelihood Closed-form

estimation
Smoothing

Logistic regression
(MaxEnt)

Probabilistic,
discriminative

Conditional
likelihood

Optimization Regularization
penalty

Perceptron
Non-probabilistic,

discriminative
Hinge Optimization Averaging;

Early stopping

SVM (linear kernel)
Non-probabilistic,

discriminative
Max-margin Optimization Regularization

penalty

Classifier: y ← arg maxy′ wᵀ Φ(x, y′)

Take-home points
• Feature-based linear classifiers are helpful for NLP tasks where interpretability is

important.

‣ You define the features, an algorithm chooses the weights. Some classifiers then exponentiate
and normalize to give probabilities.

‣ More features ⇒ more flexibility, also more risk of overfitting. Because we work with large

vocabularies, not uncommon to have millions of features.

• Learning objective/loss functions formalize training as choosing parameters to optimize a
function.

‣ Some model both the language and the class (generative); some directly model the class
conditioned on the language (discriminative).

‣ In general: Generative ⇒ training is cheaper, but lower accuracy.

Discriminative ⇒ higher accuracy with sufficient training data and computation (optimization).

• Some models, like naïve Bayes, have a closed-form solution for parameters. Learning is
cheap!

• Other models require fancier optimization algorithms that may iterate multiple times over
the data, adjusting parameters until convergence (or some other stopping criterion).

‣ The advantage: fewer modeling assumptions. Weights can be interdependent.
45

Which linear classifier to use?

• Fast and simple: naïve Bayes

• Very accurate, still simple: perceptron

• Very accurate, probabilistic, more complicated to implement: MaxEnt

• Potentially best accuracy, more complicated to implement: SVM

• All of these: watch out for overfitting!

• Check the web for free and fast implementations,
e.g. scikit-learn, SVMlight

• Later in the course, we’ll also see nonlinear models (neural networks)

46

Further Reading:
Basics & Examples

• Manning: features in linear classifiers
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
FeatureClassifiers.pdf

• Goldwater: naïve Bayes & MaxEnt examples
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf

• O’Connor: MaxEnt—incl. step-by-step examples, comparison to naïve
Bayes
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf

• Daumé: “The Perceptron” (A Course in Machine Learning, ch. 3)
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

• Neubig: “The Perceptron Algorithm”
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf

47

http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-FeatureClassifiers.pdf
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-FeatureClassifiers.pdf
http://www.inf.ed.ac.uk/teaching/courses/fnlp/lectures/07_slides.pdf
http://people.cs.umass.edu/~brenocon/inlp2015/04-logreg.pdf
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf
http://www.phontron.com/slides/nlp-programming-en-05-perceptron.pdf

Further Reading:
Advanced

• Neubig: “Advanced Discriminative Learning”—MaxEnt w/ derivatives, SGD,
SVMs, regularization
http://www.phontron.com/slides/nlp-programming-en-06-
discriminative.pdf

• Manning: generative vs. discriminative, MaxEnt likelihood function and
derivatives
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-
MEMMs-Smoothing.pdf, slides 3–20

• Daumé: linear models
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf

• Smith: A variety of loss functions for text classification
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-
slides.pdf & http://courses.cs.washington.edu/courses/cse517/16wi/
slides/tc-advanced-slides.pdf

48

http://www.phontron.com/slides/nlp-programming-en-06-discriminative.pdf
http://www.phontron.com/slides/nlp-programming-en-06-discriminative.pdf
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf
http://www.stanford.edu/class/cs224n/handouts/MaxentTutorial-16x9-MEMMs-Smoothing.pdf
http://www.ciml.info/dl/v0_8/ciml-v0_8-ch06.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-intro-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf
http://courses.cs.washington.edu/courses/cse517/16wi/slides/tc-advanced-slides.pdf

Evaluating Multiclass
Classifiers

and Retrieval Algorithms

49

Accuracy
• Assume we are disambiguating word senses such

that every token has 1 gold sense label.

• The classifier predicts 1 label for each token in the
test set.

• Thus, every test set token has a predicted label
(pred) and a gold label (gold).

• The accuracy of our classifier is just the % of
tokens for which the predicted label matched the
gold label: #pred=gold/#tokens

50

Precision and Recall
• To measure the classifier with respect to a certain

label y, and there are >2, we distinguish precision and
recall:

‣ precision = proportion of times the label was predicted
and that prediction matched the gold: #pred=gold=y/#pred=y

‣ recall = proportion of times the label was in the gold
standard and was recovered correctly by the classifier:
#pred=gold=y/#gold=y

• The harmonic mean of precision and recall, called F1-
score, balances between the two.
F1 = 2*precision*recall / (precision + recall)

51

Evaluating Retrieval Systems
• Precision/Recall/F-score are also useful for

evaluating retrieval systems.

• E.g., consider a system which takes a word as input
and is supposed to retrieve all rhymes.

• Now, for a single input (the query), there are often
many correct outputs.

• Precision tells us whether most of the given outputs
were valid rhymes; recall tells us whether most of
the valid rhymes in the gold standard were recovered.

52

Rhymes for “hinge”

53

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

Rhymes for “hinge”

54

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive
(Type I error)

Rhymes for “hinge”

55

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive
(Type I error)

False Negative

(Type II error)

Rhymes for “hinge”

56

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive
(Type I error)

False Negative

(Type II error) Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Correctly predicted =
True Positive

All other words =
True Negative

Precision & Recall

57

binge
cringe
fringe
hinge

impinge
infringe
syringe
tinge

twinge
unhinge

Gold System

klinge
minge
vinje

ainge

False Positive
(Type I error)

False Negative

(Type II error)

Correctly predicted =
True Positive

All other words =
True Negative

Sys=Y Sys=N

Gold=Y 10 3

Gold=N 1 (large)

Precision = TP/(TP+FP)  
= 10/11 = 91%

Recall = TP/(TP+FN)  
= 10/13 = 77%

F1 = 2·P·R/(P+R) = 83%

