Empirical Methods in Natural Language Processing Lecture 1 Introduction

(today's slides based on those of Sharon Goldwater, Philipp Koehn, Alex Lascarides)

26 January 2021

What is Natural Language Processing?

What is Natural Language Processing?

Applications

- Machine Translation
- Information Retrieval
- Question Answering
- Dialogue Systems
- Information Extraction
- Summarization
- Sentiment Analysis
- ...

Core technologies

- Language modelling
- Part-of-speech tagging
- Syntactic parsing
- Named-entity recognition
- Coreference resolution
- Word sense disambiguation
- Semantic Role Labelling
- ...

NLP lies at the intersection of **computational linguistics** and **artificial intelligence**. NLP is (to various degrees) informed by linguistics, but with practical/engineering rather than purely scientific aims. Processing **speech** (i.e., the acoustic signal) is separate.

This course

NLP is a big field! We focus mainly on core ideas and methods needed for technologies in the second column (and eventually for applications).

- Linguistic facts and issues
- Computational models and algorithms, especially using data ("empirical")

What are your goals?

Why are you here? Perhaps you want to:

- work at a company that uses NLP (perhaps as the sole language expert among engineers)
- use NLP tools for research in linguistics (or other domains where text data is important: social sciences, humanities, medicine, . . .)
- conduct research in NLP (or IR, MT, etc.)

What does an NLP system need to "know"?

- Language consists of many levels of structure
- Humans fluently integrate all of these in producing/understanding language
- Ideally, so would a computer!

Words

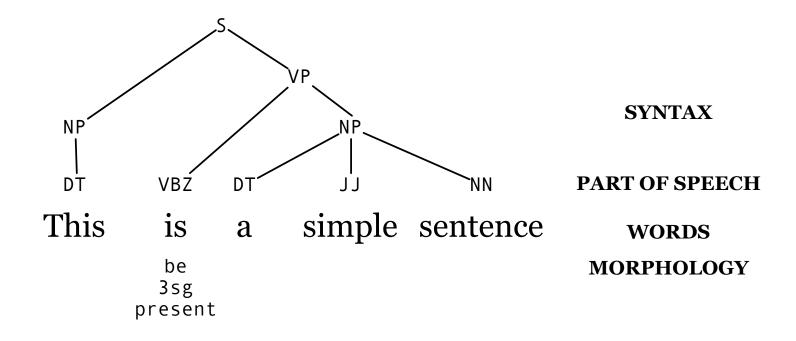
This is a simple sentence words

Morphology

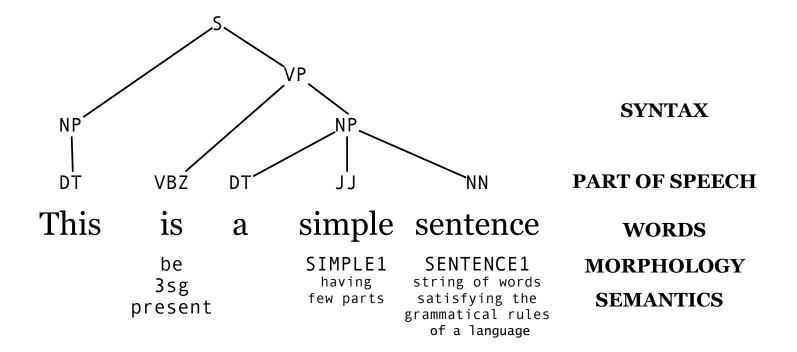
Parts of Speech

DT	VBZ	DT	JJ	NN	PART OF SPEECH
This	is	a	simple	sentence	WORDS
	be 3sø				MORPHOLOGY
	3sg present				

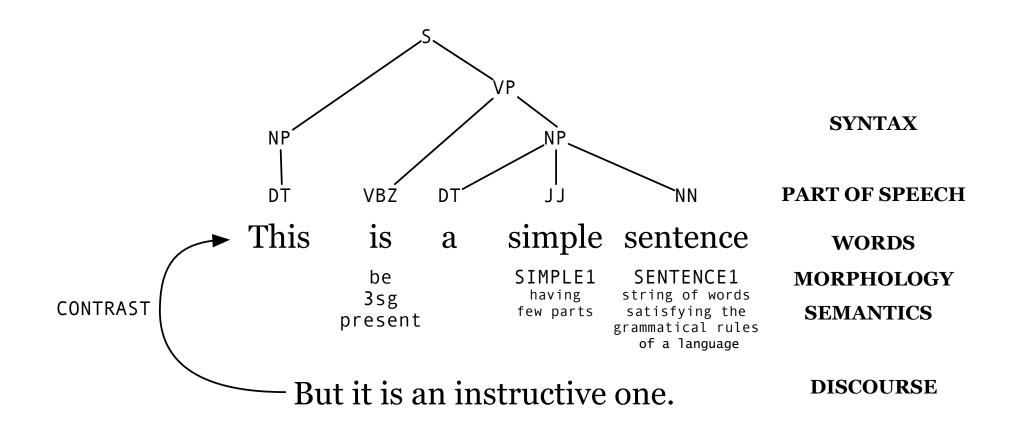
Syntax



Semantics



Discourse



- 1. Ambiguity at many levels:
- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Syntactic structure: I saw a man with a telescope
- Quantifier scope: Every child loves some movie
- Multiple: I saw her duck

How can we model ambiguity, and choose the correct analysis in context?

Ambiguity

What can we do about ambiguity?

- non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible analyses.
- probabilistic models (HMMs for POS tagging, PCFGs for syntax) and algorithms (Viterbi, probabilistic CKY) return the *best possible analysis*.

But the "best" analysis is only good if our probabilities are accurate. Where do they come from?

Statistical NLP

Like most other parts of AI, NLP is dominated by statistical methods.

- Typically more robust than earlier rule-based methods.
- Relevant statistics/probabilities are *learned from data*.
- Normally requires lots of data about any particular phenomenon.

- 2. Sparse data due to Zipf's Law.
- To illustrate, let's look at the frequencies of different words in a large text corpus.
- Assume "word" is a string of letters separated by spaces (a great oversimplification, we'll return to this issue...)

Word Counts

Most frequent words in the English Europarl corpus (out of 24m word tokens)

any	word		nouns		
Frequency	Token	Frequency	Token		
1,698,599	the	124,598	European		
849,256	of	104,325	Mr		
793,731	to	92,195	Commission		
640,257	and	66,781	President		
508,560	in	62,867	Parliament		
407,638	that	57,804	Union		
400,467	is	53,683	report		
394,778	\mathbf{a}	53,547	Council		
263,040	I	45,842	States		

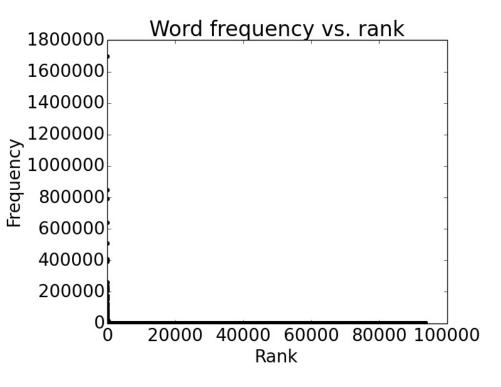
Word Counts

But also, out of 93,638 distinct words (**word types**), 36,231 occur only once. Examples:

- cornflakes, mathematicians, fuzziness, jumbling
- pseudo-rapporteur, lobby-ridden, perfunctorily,
- Lycketoft, UNCITRAL, H-0695
- policyfor, Commissioneris, 145.95, 27a

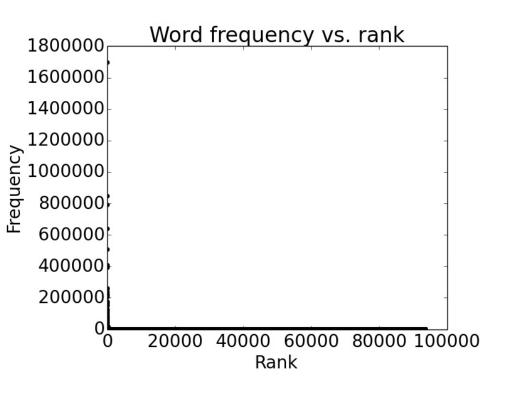
Plotting word frequencies

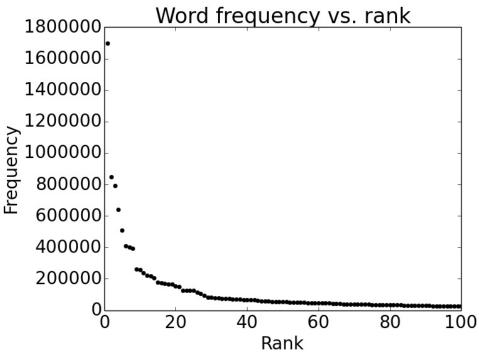
Order words by frequency. What is the frequency of nth ranked word?



Plotting word frequencies

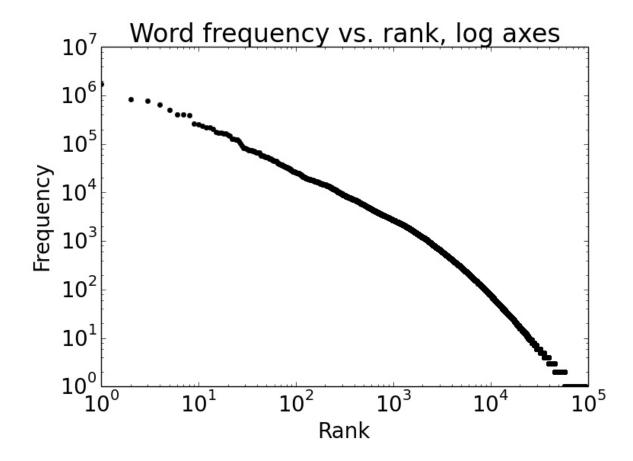
Order words by frequency. What is the frequency of nth ranked word?

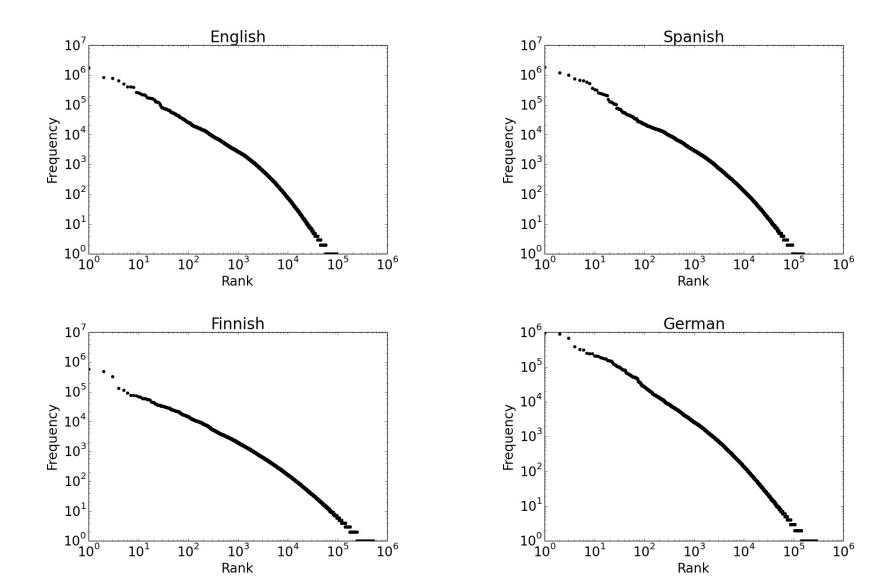




Rescaling the axes

To really see what's going on, use logarithmic axes:





Zipf's law

Summarizes the behaviour we just saw:

$$f \times r \approx k$$

- ullet f = frequency of a word
- r = rank of a word (if sorted by frequency)
- k = a constant

Zipf's law

Summarizes the behaviour we just saw:

$$f \times r \approx k$$

- \bullet f = frequency of a word
- r = rank of a word (if sorted by frequency)
- k = a constant

Why a line in log-scales? $fr = k \implies f = \frac{k}{r} \implies \log f = \log k - \log r$

Implications of Zipf's Law

- Regardless of how large our corpus is, there will be a lot of infrequent (and zero-frequency!) words.
- In fact, the same holds for many other levels of linguistic structure (e.g., syntactic rules in a CFG).
- This means we need to find clever ways to estimate probabilities for things we have rarely or never seen.

3. Variation

• Suppose we train a part of speech tagger on the Wall Street Journal:

Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.

3. Variation

• Suppose we train a part of speech tagger on the Wall Street Journal:

Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.

• What will happen if we try to use this tagger for social media??

ikr smh he asked fir yo last name

Twitter example due to Noah Smith

4. Expressivity

 Not only can one form have different meanings (ambiguity) but the same meaning can be expressed with different forms:

> She gave the book to Tom vs. She gave Tom the book Some kids popped by vs. A few children visited Is that window still open? vs Please close the window

5 and 6. Context dependence and Unknown representation

- Last example also shows that correct interpretation is context-dependent and often requires world knowledge.
- Very difficult to capture, since we don't even know how to represent the knowledge a human has/needs: What is the "meaning" of a word or sentence? How to model context? Other general knowledge?

Organization of Topics (pre-midterm)

Traditionally, NLP survey courses cover morphology, then syntax, then semantics and applications. This reflects the traditional form-focused orientation of the field, but this course will be organized differently, with the following units:

- Introduction (\approx 4 lectures): Getting everyone onto the same page with the fundamentals of text processing (Python 3/Unix) and linguistics.
- **N-grams** (\approx 2 lectures): Statistical modeling of words and word sequences.
- Classification, Lexical Semantics with Classical Approaches (\approx 2 lectures): Classifying documents or words without using grammatical structure. WordNet resource, classical ML methods.
- Sequential Prediction with Classical Approaches (\approx 5 lectures): Techniques that assign additional linguistic information to words in sentences by modeling sequential relationships, including part-of-speech tagging and lexical semantic tagging.

Organization of Topics (post-midterm)

- Language Modeling and Sequential Prediction with Vectors and Neural Networks (≈3 lectures): Models for characterizing words and text collections based on unlabeled data, or nonlinear models (neural networks) without handengineered features; and overviews of language technologies for text such as machine translation and question answering.
- Hierarchical Sentence Structure (\approx 5 lectures): Tree-based models of sentences that capture grammatical phrases and relationships (syntactic structure), as well as structured representations of within-sentence semantic relationships.
- Other Learning Paradigms and Applications (≈4 lectures): Models for characterizing words and text collections based on unlabeled data, or nonlinear models (neural networks) without hand-engineered features; and overviews of language technologies for text such as machine translation and question answering.

Backgrounds

This course has enrollment from multiple programs!:

- Linguistics
- Computer Science
- possibly: Data Analytics; Biology

This means that there will be a diversity of backgrounds and skills, which is a fantastic opportunity for you to learn from fellow students. It also requires a bit of care to make sure the course is valuable for everyone.

What's not in this course

- Formal language theory
- Computational morphology
- Logic-based compositional semantics
- Speech/signal processing, phonetics, phonology

(But see next 2 slides!)

Some Related Courses as of Spring 2021 (1/2)

Language-focused:

- Intro to NLP (Amir Zeldes, last semester)
- Computational Linguistics with Adv. Python (Liz Merkhofer, this semester)
- Social Factors in Comp Ling & AI (Shabnam Tafreshi, this semester)
- Signal Processing (Corey Miller, Fall 2019)
- Statistical Machine Translation (Achim Ruopp, Spring 2020) (also COSC)
- Dialogue Systems (Matt Marge, Fall 2018) (also COSC)
- Computational Corpus Linguistics (Zeldes, Fall 2019)
- Analyzing Language Data with R (Zeldes, Spring 2020)

- Machine Learning for Linguistics (Zeldes, Spring 2020)
- Computational Discourse Models (Zeldes, Spring 2019)

Some Related Courses as of Spring 2020 (2/2)

Al-focused:

- Machine Learning (Mark Maloof, Fall 2018)
- Automated Reasoning (Maloof, Fall 2019)
- Intro to Deep Learning with Neural Nets (Joe Garman, Spring 2020)
- Statistical Machine Learning (Grace Hui Yang, this semester)
- Data Analytics (Lisa Singh, Fall 2019)
- Information Retrieval (Nazli Goharian, Fall 2019)
- Text Mining & Analysis (Goharian, Fall 2019)

Course organization

- Instructor: Nathan Schneider
- TAs: Austin Blodgett, Shira Wein
- Lectures: TuTh 11:00–12:15 ET, Virtual
- Web site: for syllabus, schedule (lecture slides/readings/assignments):
 http://tiny.cc/enlp
 - Make sure to read the syllabus!
 - No hard-copy textbook; readings will be posted online.
- We will also use Canvas for communication once enrollment is finalized.

Action items

• First homework assignment:

As a sort of pretest to make sure you are ready for this course, you have 1 week to do A0 (due before the start of class 1 week from today). It should not be hard or take very long; if it takes you a long time you should consider a different course to practice Python skills.

All assignments will be linked from the schedule page on the course website (http://people.cs.georgetown.edu/cosc572/s21/schedule.html).

- **Survey:** Please turn in your survey so I know you are (still) interested in the course and a bit about your background.
- **Registration:** Several of you are on the waitlist. If you are not yet enrolled, bring a paper add form to the next class. There will be room for some of the people on the waitlist, but I cannot guarantee a seat for everyone who wants one.