Secure Network Provenance

Wenchao Zhou®, Qiong Fei*, Arjun Narayan?*,

Andreas Haeberlen*, Boon Thau Loo*, Micah Sherr*

m ST
@ “University of Pennsylvania *Georgetown University

%ﬂé}z\@ - EORGETY ;;‘:Ziqﬁfﬁiw
’ http://snp.cis.upenn.edu/ ——

Motivation

Why did my route to
foo.com change?!

@

foo.com

\‘% Route r,
D / =
Innocent Reason?

Malicious Attack? Alice \

Route r; 7

m An example scenario: network routing
System administrator observes strange behavior
Example: the route to foo.com has suddenly changed

What exactly happened (innocent reason or malicious
attack)?

We Need Secure Forensics

m For network routing ...
Example: incident in March 2010
m Traffic from Capitol Hill got redirected
m ... but also for other application scenarios
Distributed hash table: Eclipse attack
Cloud computing: misbehaving machines
Online multi-player gaming: cheating

m Goal: secure forensics in adversarial scenarios

" M

ldeal Solution

Q: Explain why the
route to foo.com
changed to r2.

.
“"
R
Ry
.
.
.
.
.
.
S
o
*

®e,
-
.
03
.
‘e
.
.
.
.
e
N,
.
.....
ag,
X]

A: Because someone accessed
Router D and changed the
configuration from X to .

m Not realistic: adversary can tell lies

Challenge: Adversaries Can Lie

Everything is fine. Router
E advertised a new route.

Q: Explain why the ™~ .7 e A —
route to foo.com) .7 /
changed to r2.

m Problem: adversary can ...
m ... fabricate plausible (yet incorrect) response
m ... point accusation towards innocent nodes

7
'..
.
3
-
‘e
*

Existing Solutions

m Existing systems assume trusted components

Trusted OS kernel, monitor, or hardware

m E.g. Backtracker [OSDI 06], PASS [USENIX ATC 06], ReVirt [OSDI 02],
A2M [SOSP 07]

These components may have bugs or be compromised
Are there alternatives that do not require such trust?

m Our solution:

We assume no trusted components;

Adversary has full control over an arbitrary subset of the
network (Byzantine faults).

ldeal Guarantees

Fundamentally
Impossible

m ldeally: explanation is always complete and accurate
m Fundamental limitations

E.g. Faulty nodes secretly exchange messages
E.g. Faulty nodes communicate outside the system

m What guarantees can we provide?

Realistic Guarantees

Qg ROUte T e
Q: Why did my routeto ™ .- @?Q / 2 ..
foo.com change to r2? R = A Ay s et .
- L

Aha, at least | know which
node is compromised.

A: Because someone accessed

Router D (N
|

m No faults: Explanation is complete and accurate
m Byzantine fault: Explanation identifies at least one faulty node
m Formal definitions and proofs in the paper

Outline

m Goal: A secure forensics system that works in an
adversarial environment
Explains unexpected behavior
No faults: explanation is complete and accurate
Byzantine fault: exposes at least one faulty node with evidence

Model: Secure Network Provenance
Tamper-evident Maintenance and Processing
Evaluation

Conclusion

Provenance as Explanations

| foo.com

route(C, foo.com)

‘ link(B, C) ¢ %

m Origin: data provenance in databases
Explains the derivation of tuples (ExXSPAN [SIGMOD 10])
Captures the dependencies between tuples as a graph

link(C, foo.com)

“Explanation” of a tuple is a tree rooted at the tuple

10

Provenance as Explanations
route(D, foo.com)
:Iink(D, E)
route(A, foo.com) >
ink(, B) route(B, foo.com) route(C, foo.com)
link(B, C) >Ilink(C, foo.com)
m Origin: data provenance in databases

Explains the derivation of tuples (ExXSPAN [SIGMOD 10])
Captures the dependencies between tuples as a graph

route(E, foo.com)

link(E, B)

“Explanation” of a tuple is a tree rooted at the tuple

11

Secure Network Provenance

route(A, foo.com)

link(A, B)

route(B, foo.com) route(C, foo.com)

link(B, C) >Ilink(C, foo.com)

m Challenge #1. Handle past and transient behavior
O Traditional data provenance targets current, stable state

0 What if the system never converges?
O What if the state no longer exists?

12

Secure Network Provenance

@ Time = t1 @ Time = t2 : CL} Time = t3

route(A, foo.com)

route(B, foo.com) I

|

|

|

. route(B, foo.com)

route(C, foo.com) : route(C, foo.com) !

|

|

|

I

: link(A, B) route(C, foo.com)
|
link(C, foo.com) link(B, C) link(C, foo.com) | link(B, C) link(C, foo.com)
|
' >
Timeline

m Challenge #1. Handle past and transient behavior
O Traditional data provenance targets current, stable state
O What if the system never converges?
O What if the state no longer exists?
O Solution: Add a temporal dimension 13

Secure Network Provenance

Time = t1 Time = t2 : Time = t3
O @ O

+route(A, foo.com)

route(B, foo.com) I

|

|

|

' +route(B, foo.com)

route(C, foo.com) : route(C, foo.com) !

|

|

|

I

: link(A, B) +route(C, foo.com)
|
link(C, foo.com) link(B, C) link(C, foo.com) | link(B, C) +link(C, foo.com)
|
' >
Timeline

m Challenge #2. Explain changes, not just state
O Traditional data provenance targets system state
O Often more useful to ask why a tuple (dis)appeared
O Solution: Include “deltas” in provenance

14

Secure Network Provenance

route(D, foo.com)
:Iink(D, E)

route(A, foo.com)

route(E, foo.com)

link(E, B)

link(A, B) oute(B, foo.com)

route(C, foo.com)
link(B, C) link(C, foo.com)

m Challenge #3. Partition and secure provenance

O A trusted node would be ideal, but we don’t have one
[0 Need to partition the graph among the nodes themselves
0 Prevent nodes from altering the graph

15

Partitioning the Provenance Graph

/4
/
U4
/4
/
U4
U4
/
r--- - -

, !

m Step 1: Each node keeps vertices about local actions

SR SN ——

[Split cross-node communications

16

Partitioning the Provenance Graph

r--- = - - -

!

m Step 1: Each node keeps vertices about local actions

SR SN ——

[Split cross-node communications

m Step 2: Make the graph tamper-evident

17

Securing Cross-Node Edges

Signed ! Signed
commitment &9 ! éﬁ@ ACK
] I] IS
I \\\
|

from B from A
~
RECEIVE === SEND So

~
‘,\ e R
.RECV\ SEND'
Router B

m Step 1: Each node keeps vertlces about local actions

-0

SR SN —

Router A

[Split cross-node communications

m Step 2: Make the graph tamper-evident

Secure cross-node edges (evidence of omissions)
18

Outline

m Goal: A secure forensics system that works in an
adversarial environment
Explains unexpected behavior
No faults: explanation is complete and accurate
Byzantine fault: exposes at least one faulty node with evidence

Model: Secure Network Provenance
Tamper-evident Maintenance and Processing
Evaluation

Conclusion

19

System Overview

Users Primary system Provenance system Operator

4 g) Extract provenance

— i . l— ¢ ‘\- : . .
| j Queryengine . Maintain provenance
Application
3 PR L, Query provenance
. - J/ fl Maintenance
>l engine
- — /

h 4

$

Network

m Stand-alone provenance system

® On-demand provenance reconstruction

Provenance graph can be huge (with temporal dimension)

Rebuild only the parts needed to answer a query

20

Extracting Dependencies

m Option 1: Inferred provenance
Declarative specifications explicitly capture provenance
E.g. Declarative networking, SQL queries, etc.

m Option 2: Reported provenance

Modified source code reports provenance

m Option 3: External specification

Defined on observed I/Os of a black-box system

21

Secure Provenance Maintenance

® Maintain sufficient information for reconstruction
0 1/0 and non-deterministic events are sufficient
O Logs are maintained using tamper-evident logging
m Based on ideas from PeerReview [SOSP 07]

| foo.com

RCV-ACK

22

Secure Provenance Querying

m Recursively construct the provenance graph
Retrieve secure logs from remote nodes
Check for tampering, omission, and equivocation
Replay the log to regenerate the provenance graph

Explain the route
from A to foo.com.

23

Secure Provenance Querying

m Recursively construct the provenance graph
Retrieve secure logs from remote nodes
Check for tampering, omission, and equivocation
Replay the log to regenerate the provenance graph

| foo.com

24

Secure Provenance Querying

m Recursively construct the provenance graph
Retrieve secure logs from remote nodes
Check for tampering, omission, and equivocation
Replay the log to regenerate the provenance graph

E

| foo.com

OK. Now | know route(C, foo.com)
how the route

was derived.

link(C, foo.com)

25

Outline

m Goal: A secure forensics system that works in an
adversarial environment
Explains unexpected behavior
No faults: explanation is complete and accurate
Byzantine fault: exposes at least one faulty node with evidence

Model: Secure Network Provenance
Tamper-evident Maintenance and Processing
Evaluation

Conclusion

26

Evaluation Results

m Prototype implementation (SNooPy)
How useful is SNP? Is it applicable to different systems?
How expensive is SNP at runtime?
m Traffic overhead, storage cost, additional CPU overhead?
m Does SNP affect scalability?
What is the querying performance?
m Per-query traffic overhead?
m Turnaround time for each query?

27

Usability: Applications

m We evaluated SNooPy with
Quagga BGP: RouteView (external specification)
m Explains oscillation caused by router misconfiguration
Hadoop MapReduce: (reported provenance)
m Detects a tampered Mapper that returns inaccurate results
Declarative Chord DHT: (inferred provenance)
m Detects an Eclipse attacker that always returns its own ID

m SNooPy solves problems reported in existing work

28

Runtime Overhead: Storage

£
0]
|

S
()]
T

Over 50% of the overhead
> was due to signatures and
acks. Batching messages

Per-node log growth (MB/minute)
o
N
I

0.2 | would help.
) = - I
Quagga Chord Chord Hadoop Hadoop
Small Large Small Large

m Manageable storage overhead
One week of data: E.g. Quagga — 7.3GB; Chord — 665MB

29

Query Latency

68
64
60

16

‘ound time (s)

dominated by 12_

verifying logs

and snapshots
4

- replaying logs

largely due to
gy < B \/crification

\

-1 Replay
B Download
8
ei

Quagga Quagga Chord Chord Hadoop
Disappear BadGadget Lookup Lookup Squirrel
(Small) (Large) (Small)

m Query latency varies from application to application

m Reasonable overhead

30

Summary

m Secure network provenance in untrusted environments
Requires no trusted components
Strong guarantees even in the presence of Byzantine faults

m Formal proof in a technical report

Significantly extends traditional provenance model

m Past and transient state, provenance of change, ...
Efficient storage: reconstructs provenance graph on demand
Application-independent (Quagga, Hadoop, and Chord)

m Questions?

Project website: http://snp.cis.upenn.edu/

31

