Towards a Data-centric View of Cloud Security

Wenchao Zhou^{*}, Micah Sherr[#], William R. Marczak⁺, Zhuoyao Zhang^{*}, Tao Tao^{*}, Boon Thau Loo^{*}, and Insup Lee^{*}

*Univ. of Pennsylvania #Georgetown Univ. +Univ. of California, Berkeley

Introduction

Success of cloud

- Economics of outsourcing data and computation
- Continued migration of applications to the cloud
- □ Amazon EC2, salesforce, Microsoft Office...

Security: one barrier that prevents further success

- Enforce the privacy and integrity of user data
- Current solutions mostly focus on OS and virtual machines

Cloud applications are increasingly interdependent

Motivating Examples

Interconnecting enables more adaptable systems

Online market-places

- □ Retail portals such as Yahoo!, Amazon serve as storefronts
- Collect product and inventory information from sellers
- Should prevent from ...
 - merchants querying each others' inventories and prices
 - communicating payment info with unauthorized parties

Social network services, outsourced data storage...

Overview

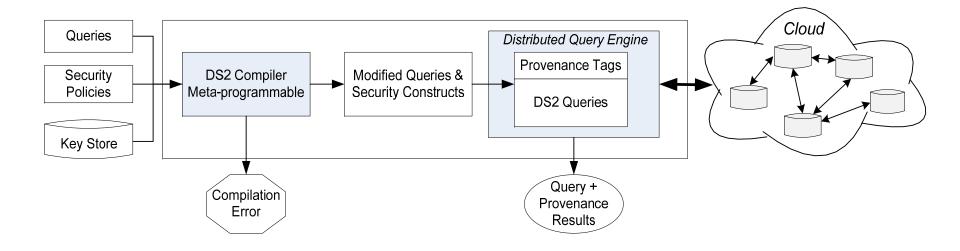
A comprehensive solution should ...

- go beyond OS and VM-centric security solutions
- securely share, verify, and trace data between applications

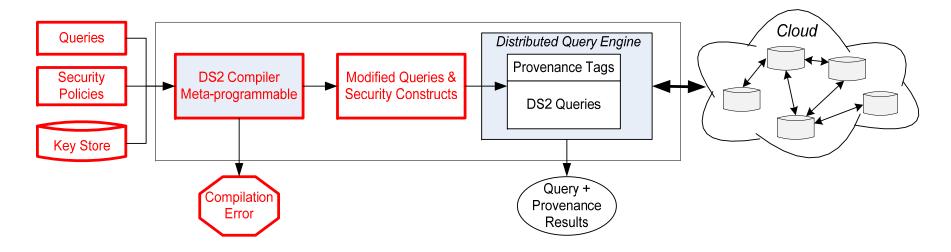
DS2 (Declarative Secure Distributed Systems)

http://netdb.cis.upenn.edu/ds2/

- Secure querying processing
- Declarative access control polices for data sharing
- □ System analysis and forensics using distributed provenance
- End-to-end verification of data partitioned across users

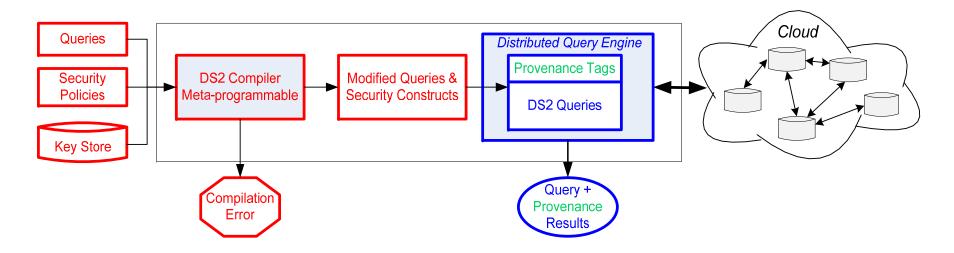

Outline

- Introduction
- Motivation


DS2 Platform

- Secure Data Processing
- Declarative Access Control
- Distributed Provenance
- End-to-end query verification
- Conclusion

DS2 Platform



DS2 Platform

- Integration of access control policies
 - Meta-programmability

DS2 Platform

- Integration of access control policies
 - Meta-programmability
- Provenance-aware secure query processing
- End-to-end verification

Secure Query Processing

Zhou et al. Unified Declarative Platform for Secure Networked Information Systems, ICDE09

Compact specification of network protocols

Secure Network Datalog (SeNDlog)

- A distributed variant of Datalog
- Continuous recursive queries over network state
- Security Primitives
 - Rules within a context
 - Authenticated communication

A variety of secure distributed systems

Secure network routing (S-BGP), DHTs, p2p query processing

Example: Authenticated Map-Reduce

At MW:

m1 map(ID,Content) :- file(MW,ID,Content).
m2 MW says emits(MW,Word,Num,Offset)@RW : word(Word,Num,Offset),
 reduceWorker(RID,RW), RID=f_SHA1(Word).

- In the context of Map Worker
 - □ m1: Perform map operation on each file
 - m2: For each word in the document, pass it to the reducer according to the mapper-reducer mapping.

Authenticate outgoing tuples by tagging signatures

Example: Authenticated Map-Reduce

At RW:

r1 reduceTuple(Word,a_LIST<Num>) :-MW says emits(MW,Word,Num,Offset). r2 reduce(Word,List) :- reduceTuple(Word,List), Master says rBegin(RW).

In the context of Reduce Worker

r1: Group the received words, and maintain a list for each word
 r2: Perform reduce operation once received signal from Master

Verify the signatures of the incoming tuples

Example: Authenticated Map-Reduce

At RW: r1 reduceTuple(Word,a_LIST<Num>) :-MW says emits(MW,Word,Num,Offset).

Unified platform: protocol specs & security enforcement

Building blocks for more complex security policies

 \Box TT. Group the received words, and maintain a list for which word

□ r2: Perform reduce operation once received signal from Master

Verify the signatures of the incoming tuples

Access Control

Marczak et al. SecureBlox: Customizable Secure Distributed Data Processing, SIGMOD10

View-based Access Control

- Horizontal and vertical partition of relational table
- Authorization + authentication
- Access ONLY to the secure views
- □ How can we enforce this?

At alice:

sv1 sview(Name,Dept) :- employee(Name,Dept,Salary), Salary < 5K. sv2 predsecview("employee","sview",U) :- authority says good(U).

sv3 ret(Name,Dept)@U :- U says query("*sview*"), sview(Name, Dept).

Access Control

Marczak et al. SecureBlox: Customizable Secure Distributed Data Processing, SIGMOD10

Enforcement: meta-constraints

- Meta-model rules as data
- □ Check the query format against schema constraints
- \Box says(U,R), body(R,A), functor(A,P) -> predsecview(_,P,U)

Code Generation

- Automatic rewrite of queries to refer to security views
- Updates in the meta-model
- Customizable security constructs according to policy changes

Outline

- Introduction
- Motivation
- DS2 Platform
 - □ Secure Data Processing
 - Declarative Access Control
 - Distributed Provenance
 - End-to-end query verification
- Conclusion

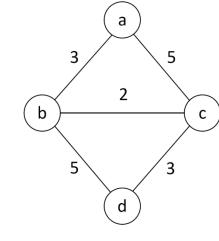
Distributed Provenance

Zhou et al. Efficient Querying and Maintenance of Network Provenance at Internet-Scale, SIGMOD10

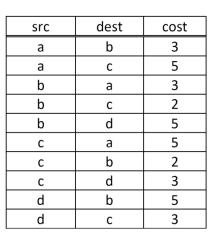
Distributed provenance (or lineage)

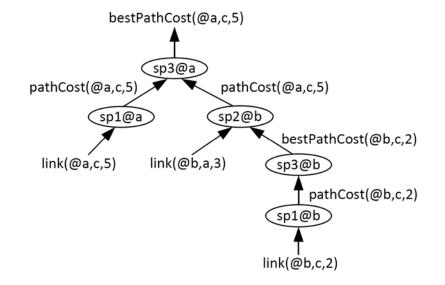
- Explains the existence and derivation of any network state
- Maps naturally into various applications

Applications in cloud


- Error detection, diagnosis, and forensics
- Mitigation: propagating corrections only to affected applications
- History-based trust management

Distributed Provenance


Zhou et al. Efficient Querying and Maintenance of Network Provenance at Internet-Scale, SIGMOD10


Data model – a directed graph

- Tuple and rule execution vertices
- Edges represent dataflows

link (@src, dest, cost)

Distributed Provenance

Zhou et al. Efficient Querying and Maintenance of Network Provenance at Internet-Scale, SIGMOD10

Data model – a directed graph

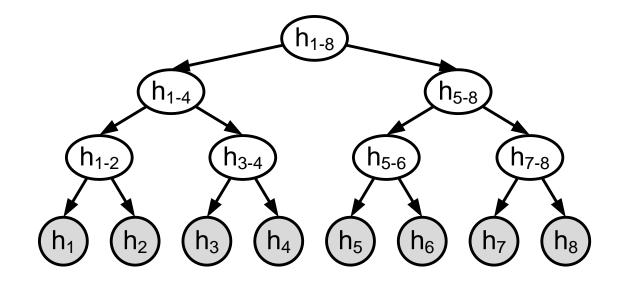
- Tuple and rule execution vertices
- Edges represent dataflows

Maintenance and querying

- Maintained as distributed relational tables
- Views of base and derived tuples
- Querying performed as graph traversal

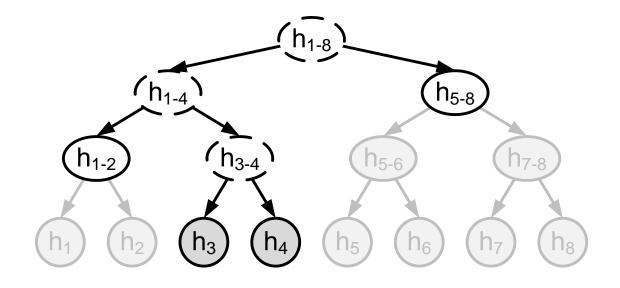
Reasonable overhead for distributed provenance

End-to-end Query Verification


Threat Model

- □ The owner of the data is trustworthy
- □ Some fraction of the cloud that host the data could be malicious

Verification with MHT (Merkle Hash Tree)


- Previously used to check correctness of outsourced databases
- □ Maintain hash hierarchy (MHT) on pre-sorted data
- VOs (verification objects) attached to query results
 - Signature over the root of MHT
 - Hash values required for re-computing the root of MHT

MHT Example

Query Result = {x3}

MHT Example

- Query Result = {x3}
- $VO = \{SIG(h_{1-8}), h_4, h_{1-2}, h_{5-8}\}$
- $hash(x_3) | h_4 | h_{1-2} | h_{5-8} == h_{1-8}?$

P-MHT Example

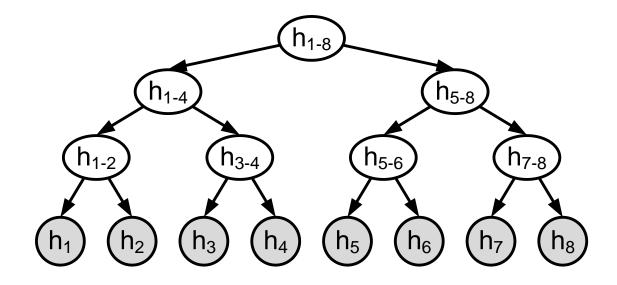


Table is partitioned across three nodes

 $\Box X1 = \{x1, x2, x3\}, X2 = \{x4, x5, x6\}, X3 = \{x7, x8\}$

Each node maintain a portion of MHT

Sufficient to generate the VOs for the tuples located on the node.

P-MHT Example

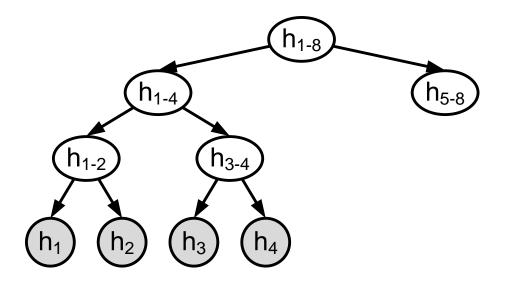


Table is partitioned across three nodes

 $\Box X1 = \{x1, x2, x3\}, X2 = \{x4, x5, x6\}, X3 = \{x7, x8\}$

Each node maintain a portion of MHT

Sufficient to generate the VOs for the tuples located on the node.

Conclusion and Future Work

- Data-centric: go beyond OS/VM-centric solutions
- Security challenges faced by data-centric cloud security
 - Secure query processing and data sharing
 - Analysis and tracing of data flowing across applications
 - End-to-end verification
- Preliminary design of the DS2 Platform

Future work

- Close integration with cloud applications
- Security guarantees for distributed provenance

Towards a Data-centric View of Cloud Security

http://netdb.cis.upenn.edu/ds2/