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ABSTRACT
This paper introduces Senser, a system for validating retrieved
web content. Senser does not rely on a PKI and operates even
when SSL/TLS is not supported by the web server. Senser oper-
ates as a network of proxies located at different vantage points on
the Internet. Clients query a random subset of Senser proxies for
compact descriptions of a desired web page, and apply consensus
and matching algorithms to the returned results to locally render a
“majority” web page. To ensure diverse selections of proxies (and
consequently decrease an adversary’s ability to manipulate a ma-
jority of the proxies’ requests), Senser leverages Internet mapping
systems that accurately predict AS-level paths between available
proxies and the desired web page. We demonstrate using a de-
ployment of Senser on Amazon EC2 that Senser detects and mit-
igates attempts by adversaries to manipulate web content — even
when controlling large collections of autonomous systems — while
maintaining reasonable performance overheads.

1. INTRODUCTION
SSL/TLS is the predominant protocol used to protect web con-

tent. When used correctly, it provides strong confidentiality and
authenticity guarantees. Unfortunately, while SSL/TLS is critically
important in securing many web transactions, it is often unavail-
able and too often is susceptible to implementation weaknesses.
To illustrate, Sunshine et al. [24] demonstrate that users often do
not heed browsers’ certificate warning messages. Additionally, the
2011 DigiNotar incident [26] and academic studies of SSL/TLS de-
ployment [12] bring into focus longheld concerns about the lack of
safeguards in the web’s public key infrastructure or “PKI” (cf. [8]).
Finally, SSL/TLS is not universally available: we find that less than
30% of both Alexa’s top 100,000 and top 1,000 websites correctly
support SSL/TLS (see Appendix A).

SSL/TLS has been the subject of more than two decades of re-
search and there are numerous proposals for increasing its adop-
tion, mitigating weaknesses of the web’s PKI, improving the usabil-
ity of browsers’ certificate warning messages and increasing public
awareness of the importance of certificate verification. However,
until comprehensive practical solutions are developed and widely
deployed, it is useful to consider mechanisms for detecting and
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mitigating the malicious modification of web content in transit that
does not require Internet-scale (re)deployments or reconfigurations.

In this paper, we focus on ensuring the authenticity of web con-
tent. We introduce a system, Senser, that validates retrieved web
content even when SSL/TLS is not supported by the web server.
Senser consists of a set of volunteer-operated proxies located at
different vantage points on the Internet. Clients query a random
subset of these proxies for a desired URL (e.g., a page, stylesheet,
image, embedded object, etc.). The proxies fetch the URL and
return concise descriptors to clients who may then render a “major-
ity” version of the web resource. Unless an adversary can affect a
majority of the chosen proxies’ fetches, it cannot undetectably alter
the web content. Hence, Senser is appropriate in settings where an
adversary may censor/alter non-SSL content in transit.

The architecture of our system is similar to Perspectives [30],
which also uses a network of proxies in favor of the web’s existing
PKI. Perspectives validates a site’s certificate by comparing copies
of the certificate retrieved from different proxies. The underlying
assumption is that an adversary may be able to position himself be-
tween the user and the website, but is unlikely to be able to position
himself between the website and all of the proxies.

This paper extends this model in two important ways. First, we
show that a network of proxies can be used to validate the content
of web pages. Here, a major challenge is that unlike SSL/TLS fin-
gerprints which are usually consistent regardless of the requestor’s
location, the content of a web page may change depending upon
who is accessing it. As we discuss below, websites often serve lo-
calized and/or personalized content, making it non-trivial to form a
consensus of a retrieved webpage even in the absence of an adver-
sary. However, by verifying content rather than certificate finger-
prints, Senser does not rely on SSL/TLS or the web’s PKI and is
thus compatible with sites that do not support HTTPS.

Second, we observe that an adversary may be able to influence
multiple proxies’ views of a web resource if it is advantageously
positioned. For example, a malicious or compromised autonomous
system (AS) may be on the network path between several of the
proxies and the requested web server and can therefore manipulate
those proxies’ fetches. To mitigate such attacks, we develop client-
side proxy selection algorithms that maximize the AS diversity of
the paths between the proxies and the web server. Our algorithms
take as input compact topological maps of the Internet (sometimes
called Internet atlases [18]) and the requested URL, and ensure
network diversity both for DNS lookups and proxy fetches.

Threat Model. We focus on the problem of discovering (and po-
tentially recovering from) surreptitious man-in-the-middle (MitM)
attacks against non-HTTPS protected web content.

A particularly interesting class of attackers, and one that we em-
phasize in this work, is that of a censor who wishes to block or



modify intercepted web traffic. We conservatively model censors
as AS-level adversaries. We distinguish between blocking (prevent-
ing the user from accessing the requested website), whole-page al-
teration (replacing the true webpage with one chosen by the ad-
versary), and partial alteration (selectively modifying sections of a
webpage).

We remark that we do not attempt to prevent a censor from block-
ing access to the Senser network; an anti-blocking system (e.g.,
Tor bridges [27] or Telex [31]) could be used to access the Senser
network when faced with such actions. In such a situation Senser
still provides an advantage over the anti-blocking system, because
the censor has an incentive to participate in the anti-blocking sys-
tem (e.g., run a Tor exit proxy) to censor content that is accessed
through it. Senser mitigates a censor’s ability to censor content
by participating in the system by comparing content retrieved from
multiple Senser proxies that are chosen using an AS-aware proxy
selection algorithm. Here, our aim is to detect whether (and if so,
how) particular web pages have been modified by a censor.

Challenges. The Senser architecture presents several technical
challenges which we address in this paper:

• Consensus construction: Even in the absence of an ad-
versary, websites may offer client-specific content. For ex-
ample, many websites routinely serve content based on the
client’s perceived geographic location. In Senser, we relax
the requirement that the consensus represent any particular
response sent by the web server, and instead attempt to cre-
ate a “majority version” of that page that contains its core
content. In more detail, we represent the web page versions
retrieved by the proxies as HTML trees, and perform an ef-
ficient tree-matching procedure to find a large common sub-
tree.
• Bandwidth costs: The average webpage is estimated to con-

sume at least 320KB of bandwidth [20]. Fetching multiple
copies of webpages in their entirety from a set of proxies
is thus likely too prohibitive for many clients. We reduce
this cost by (i) fetching only concise summaries of webpage
content and (ii) fetching website content only once using an
established consensus.
• Resistance to AS-level adversaries: We envision AS-level

adversaries who control large segments of the network and
may attempt to manipulate web content. To limit the ability
of AS-level adversaries, we introduce an offline AS-aware
proxy selection algorithm that allows clients to intelligently
select proxies such that the paths from the proxies to the des-
tination website are suitably AS-disjoint.
• Idempotency: Our architecture requires that a webpage be

retrieved multiple times. Senser is therefore ill-suited for
web requests that are not idempotent.

The Senser architecture meets the first three challenges, but is in-
compatible with sites that require HTTP POSTs or use non-effect-
free HTTP GETs. We argue, however, that our initial design and
implementation are appropriate for a large class of websites: those
that serve news stories or other content and do not require readers
to authenticate to the site, which are likely targets for content mod-
ification due to censorship. Later, we discuss adaptation of Senser
to support non-idempotent operations in Section 4.

We evaluate the performance, security, and utility of Senser un-
der both simulation and a testbed deployment. Our results show
that Senser is able to render the majority of pages in a usable way
while incurring a modest latency overhead for the majority of web-
sites. Our AS-aware proxy selection algorithm is able to reduce

the system’s failure rate (the proportion of pages that can be un-
detectably altered by the adversary) by up to 15% by increasing
network diversity.

Our implementation of Senser is released as open-source soft-
ware and is available at https://security.cs.georgetown.edu/senser/.

2. RELATED WORK
Multiple vantage points. Most similar to Senser are approaches
for verifying digital certificates using a set of external verifiers.
Wendlandt et al. [30] address the problem of “trust on first use”
(TOFU) authentication by verifying that a server’s public key re-
mains the same when observed from servers at different locations.
Their approach aims to improve usability weaknesses in certificate
verification [24] by relying on trusted authenticator nodes rather
than on a public key infrastructure. Similarly, Senser does not
utilize PKIs and uses different perspectives to validate web pages.
However, unlike the approach by Wendlandt et al., Senser verifies
a webpage’s content rather than its certificates. It is also applicable
for websites that do not use SSL/TLS.

The Snakes on a Tor Exit Scanner (SoaT) [23] scans Tor [7] exit
relays to detect misbehavior. SoaT operates by comparing hashes
of web content retrieved from the Tor network with that retrieved
from direct (non-anonymized) communication. Noting that false
positives may be introduced due to personalized web content, SoaT
also retrieves the web content from a second network location to
identify the personalized content and reduce its false positive rate,
at the cost of increased false negative rates. Senser provides a more
comprehensive solution that supports fine-granularity content ren-
dering when adversaries selectively modify portions of web pages.

The recently released Filter Bubble [32] extension for Chrome
redirects Google search queries to a set of distributed nodes, in-
forming the user of how search results differ based on geographic
region. Like Senser, Filter Bubble detects personalized content,
but is applicable only to Google. Similarly, Netalyzr [17] uses a set
of distributed nodes to determine whether an ISP is actively block-
ing, limiting, or giving preferential treatment to certain services.

CensMon [22] aims to provide a similar outcome to Senser by
routing queries through several geographically dispersed agents and
analyzing the results of the DNS lookup and returned HTML to
see how different nodes are receiving different information. Their
HTML difference detection is based on MD5 and provides no re-
construction. Further, they do not take network paths into account.

Tree alignment and Merkle Hash Trees. Merkle Hash Trees
(MHTs) have been applied to authenticate queries performed by
untrusted third parties [5, 6, 10]. To do so, an owner computes a
hash tree of the data to be queried, distributes the hash tree to all
potential clients, and distributes the data to third parties. The hash
tree can then be used by clients to verify query results returned
by third parties. Bayardo and Sorensen [1] use a similar method
to authenticate the correctness of HTTP 200 and 404 responses.
Senser also uses MHTs to concisely describe web pages, but does
not rely on a single tree to perform verification. Instead, we apply
a tree alignment algorithm to construct a consensus tree and render
a “majority” webpage.

While we use a simple and efficient tree alignment algorithm
that employs breadth first search, others have explored tree align-
ment algorithms that yield results closer to the optimal outcome
at the expense of performance. These approaches generalize the
string alignment problem to trees and solve it using dynamic pro-
gramming. As with the string alignment problem, the algorithms
consider the cost of operations such as node insertion, deletion,
and replacement. Carrillo and Lipman [3] present an optimal mul-
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tiple tree alignment that runs in exponential time. The pairwise tree
alignment problem can be solved inO(|T1|×|T2|×h1×h2) time,
where |Ti| is the size of tree i and hi is the height of tree i [25].
Wang et al. [28] improve upon this algorithm to solve the problem
in O(|T1| × |T2| × min(h1, l1) × min(h2, l2)) time, where li is
the number of leaves in tree i. Followup work [4] applies the center
star approximation algorithm [11] for multiple string alignment in
order to approximately align multiple HTML trees.

Censorship resistance. Information slicing [16] divides scram-
bled messages into pieces, and sends the pieces along disjoint paths
in a P2P overlay network to reduce the chance of the complete
message (i.e., all pieces) being intercepted by an attacker. Senser
similarly leverages the use of disjoint network paths to reduce the
impact of a malicious AS that censors web content.

There are also a number of proposed anti-blocking systems that
use steganography and/or covert channels to bypass blocking ef-
forts. Tor bridges [27] are Tor relays that are not publicly listed
by Tor directory servers, making them more difficult for an adver-
sary to discover and block. Infranet [9] encodes requests using
a sequence of innocuous-looking webpage requests and hides re-
sponses within JPEG images. Collage [2] also uses steganography,
but uses photo sharing and other user-generated content sites as
“drop boxes” for conveying hidden messages. Similarly, in Censor-
Spoofer [29], clients embed requested URLs using steganographic
techniques in email messages and receive responses via IP packets
with spoofed source addresses. More recently, a number of decoy
routing solutions have been introduced [13, 15, 31]. Decoy routers
intercept SSL/TLS streams addressed to an unfiltered destination.
The routers — which must not be subject to censorship and must
be positioned between the sender and the addressed destination —
decipher the hidden destination that is embedded in the SSL/TLS
exchange (typically, in the handshake) and redirect the SSL com-
munication to the hidden destination. Recent work has shown that
adversaries can adjust their routes to enumerate decoy routers and
defeat the anti-censorship measure [21].

All of the above anonymity systems implicitly assume that the
privacy network’s egress points can correctly deliver requests and
return the correct responses. Senser can help mitigate potential
“last mile” attacks in which the adversary modifies content as it
leaves or re-enters the anonymity network. By itself, Senser does
not (and is not intended) to bypass censorship efforts. Rather, our
focus is to identify when an adversary (such as a censor) modifies a
web page element and, when such attacks take place, how the page
has been modified.

3. SYSTEM DESIGN
This section describes in greater detail the Senser system. We

begin by presenting an overview of the Senser architecture (Sec-
tion 3.1). We then discuss the major functionalities of Senser, in-
cluding (i) the construction of a concise description of a requested
URL which we call its summary (Section 3.2), (ii) the formation of
a consensus that represents the majority of the proxies’ interpreta-
tions of the requested URL (Section 3.3), and (iii) a proxy selection
algorithm that reduces the influence of one or more malicious au-
tonomous systems in the network (Section 3.4). We discuss the
handling of several practical deployment issues in Section 4.

3.1 System Overview
Senser defends against potential manipulation of retrieved web

contents by strategically relaying a user’s request for a target web-
page to multiple proxies, with the hope that a majority of these
proxies will individually and correctly retrieve the webpage.

Client Proxy P2

Proxy P1

Proxy P3

AS1 AS2

AS4

AS3

AS5

foo.com

(a)

Client Proxy P2

Proxy P1

Proxy P3

AS1 AS2

AS4

AS3

AS5

foo.com

(b)

Figure 1: Senser validates retrieved web contents in various attack sce-
narios. (a) An adversary in AS2 modifies (e.g., censors) the web content
of foo.com. Proxy P1 and Proxy P3 take routes AS3 → AS5 and AS4 →
AS5 respectively, both of which avoid the modification by AS2. The client
leverages these proxies to circumvent the attack. (b) Proxy P3 is compro-
mised and censors foo.com. The client retrieves copies of the requested
URL from P1, P2, and P3, and constructs a “majority opinion” response.

Senser uses the same mechanism to validate HTML content and
embedded objects (pictures, videos, etc.). We assume that one
or more adversaries may perform blocking, whole-page alteration,
and/or partial alteration attacks against some fraction of the prox-
ies. In addition, the web server may intentionally serve inconsistent
contents to different proxies. If a majority of the proxies are able to
retrieve an accurate version of the targeted URL, then the user can
construct a “consensus” version from the returned results that more
accurately reflects the URL’s actual contents.

System model. Figure 1 presents an overview of the Senser sys-
tem. Senser consists of a client running on the user’s machine, and
a pool of proxies distributed across the Internet. The client com-
municates with the proxies using a secure communication channel
(e.g., through SSL/TLS). As with the Perspectives system [30], we
assume that the list of proxies and their public keys is preloaded
with the Senser client software (or securely retrieved using a trusted
directory) and that no PKI is required to authenticate the proxies.
Finally, we assume that a subset of the proxies may be disconnected
or compromised by an adversary.

Consider the example scenarios shown in Figure 1 in which the
adversary modifies the content of a requested web page. In Fig-
ure 1a, the client uses three proxies: P1, P2, and P3. Here, AS2
modifies responses from foo.com, causing the client to receive a
modified webpage from P2 (since the path from P2 to foo.com tra-
verses AS2). On the other hand, proxies P1 and P3 will be able to
retrieve the unmodified webpage, as their routes to the web server
avoid AS2. Senser leverages the responses received at these prox-
ies to circumvent the attack.

Similarly, Figure 1b shows an attack scenario due a compro-
mised proxy. The use of multiple proxies enables the client to form
a consensus and construct an accurate view of the requested URL.

We explain this process in more detail below.

System execution. Upon receiving a URL request from the user,
Senser takes the following steps to generate a response:

• The client forwards the URL request to a selected subset of
proxies via secure communication. Note that proxies located
in different ASes may still share part of their routes to the
web server. A malicious AS may therefore affect the re-
sponses received by different proxies. To mitigate the po-



<html>
<title>IP Lookup</title>
<body>Your IP is <b>10.0.0.1</b></body>
</html>

Figure 2: Example HTML document.

tential damage due to a malicious AS, we deploy a proxy
selection module to maximize the diversity of the AS-level
paths from the chosen proxies to the website.
• Each selected proxy sends an HTTP request to the web server,

and passes the received HTTP response to the summary con-
struction module. The module crafts a concise summary of
the requested object (e.g., HTML page) and returns the sum-
mary to the client, again via secure communication. To pro-
duce compact summaries, we construct Merkle Hash Trees
(MHTs) over retrieved web content, because HTML has a
hierarchical structure that can be treated as a tree.
• The client compares the summaries collected from the prox-

ies to identify inconsistencies, and uses a consensus con-
struction module to resolve the inconsistencies. The consen-
sus version contains the elements agreed upon by a majority
of the proxies (for example, the elements present in a ma-
jority of the summaries of HTML documents). Rather than
doing a fuzzy comparison, we require elements to match ex-
actly since even the change of a single word can significantly
alter the meaning of a webpage.
• Finally, the Senser client retrieves the consensus version’s

content from one or more proxies. The retrieved contents
are compared against the reported summaries for consistency
(i.e., to ensure that the retrieved content hashes to the correct
value in the consensus version MHT), and the result is re-
turned to the browser for rendering.

3.2 Summary Construction
Upon receiving a client’s request for a particular URL, the proxy

forwards that request to the requested web server. In the case of
HTML documents, the retrieved webpage is normalized using an
HTML parser (e.g., Jsoup1). The proxy then creates an MHT of the
retrieved content.

We first describe the case in which the client requests an HTML
document: The MHT is constructed using the (normalized) HTML’s
structure such that each node in the MHT corresponds to either an
HTML tag (e.g., <body>) or the text inside a tag (e.g., the con-
tent in <title>content</title>). Basing the MHT’s structure on
the structure of the HTML document may create imbalanced trees,
but the construction allows us to quickly identify the structural and
contextual differences across multiple MHTs (see Section 3.3).

Importantly, the MHTs we use differ from traditional MHTs in
which each internal node contains only a hash over its children and
pointers to those children. In Senser, an internal node consists of
(i) a hash over the corresponding HTML tag name and, if applica-
ble, its attributes (the tag-hash), (ii) a hash of the node and all of
its children (the full-hash), and (iii) pointers to its children. A leaf
node sets its tag-hash as NULL and its full-hash based on a hash
over its corresponding content (which could be a string, a URL, a
picture, or some other object type).

To illustrate, consider the example HTML document in Figure 2
which shows the IP address of the visiting user. Figure 3 shows the
corresponding MHT-based summary of the example HTML docu-
ment. Note that the root of the MHT contains the tag-hash (“TH”)

1http://jsoup.org/

TH1 = HASH ( <html> )
FH1 = HASH (TH1 + FH2 + FH3)

TH2 = HASH ( <title> )
FH2 = HASH (TH2 + FH4)

TH3 = HASH ( <body> )
FH3 = HASH (TH3 + FH5 + FH6)

TH4 = NULL
FH4 = HASH (“IP Lookup”)

TH5 = NULL
FH5 = HASH (“Your IP is ”)

TH6 = HASH ( <b> )
FH6 = HASH (TH6 + FH7)

TH7 = NULL
FH7 = HASH (“10.0.0.1”)

Figure 3: The corresponding MHT-based summary of the example HTML
document depicted in Figure 2.

Algorithm 1 Consensus Construction

1: proc consensus(nNodes, MHT_roots[])
2: root← an empty leaf node
3: nodes_queue← an empty queue
4: nodes_queue.push_back(root)
5: candidates_queue← an empty queue
6: candidates_queue.push_back(MHT_roots)
7: while nodes_queue 6= empty do
8: currentNode← nodes_queue.pop_front()
9: candidates← candidates_queue.pop_front()
10: for all node in candidates do
11: count_fullhash[node->fullhash]++
12: count_taghash[node->taghash]++
13: end for
14: if maxF← MAX(count_fullhash) > nNodes/2 then
15: find node, s.t. count_fullhash[node.fullhash]=maxF
16: currentNode← clone(node)
17: else
18: if maxT← MAX(count_taghash) > nNodes/2 then
19: find taghash, s.t. count_taghash[taghash]=maxT
20: currentNode.taghash← taghash
21: numChildren← MAX(node.numChildren), for all node where

node.taghash=taghash
22: for 0 < i < numChildren do
23: newNode← an empty leaf node
24: currentNode.addChild(newNode)
25: nodes_queue.push_back(newNode)
26: candidates.push_back(node.child[i])
27: candidates_queue.push_back(candidates)
28: end for
29: else
30: currentNode← a node marked NON-CONSENSUS
31: end if
32: end if
33: end while
34: return root

generated from the tag html and the full-hash (“FH”) generated
from the tag-hash and the full-hash of its two children (the title el-
ement and the body element). The MHT-based summary is recur-
sively defined in a top-down fashion until leaf nodes are reached.

We remark that the hash tree sent to the client does not con-
tain the HTML corresponding to the hashes, which significantly
reduces Senser’s communication overhead. The actual content is
retrieved by the client once a consensus has been reached.

The above summary construction technique applies to both well-
structured documents (e.g., HTML and XML objects) and binary
objects. The latter case applies, for example, when the user requests
an image or video file. Here, the summary consists of a single (leaf)
node with a tag-hash of NULL and a full-hash that is the hash of
the file’s contents.

3.3 Consensus Construction
To construct a consensus among the MHT-based summaries re-

turned by the proxies, the client simultaneously performs a breadth
first search (BFS) on each of the MHTs. Algorithm 1 presents the
pseudo-code of the consensus construction procedure. The algo-
rithm takes as input the MHTs from the proxies and outputs the
consensus tree. While there exist other algorithms that allow con-

http://jsoup.org/


TH1 = HASH ( <html> )
FH1 = HASH (...)

TH2 = HASH ( <title> )
FH2 = HASH (...)

TH3 = HASH ( <body> )
FH3 = HASH (...)

TH4 = NULL
FH4 = HASH (“IP Lookup”)

TH5 = NULL
FH5 = HASH (“Your IP is ”)

TH6 = HASH ( <b> )
FH6 = HASH (...)

TH7 = NULL
FH7 = HASH (“10.0.0.3”)

a) Summary at P1
(a) Summary at P1

TH1 = HASH ( <html> )
FH1 = HASH (...)

TH2 = HASH ( <title> )
FH2 = HASH (...)

TH3 = HASH ( <body> )
FH3 = HASH (...)

TH4 = NULL
FH4 = HASH (“IP Lookup”)

TH5 = NULL
FH5 = HASH (“Censored”)

b) Summary at P2
(b) Summary at P2

TH1 = HASH ( <html> )
FH1 = HASH (...)

TH2 = HASH ( <title> )
FH2 = HASH (...)

TH3 = HASH ( <body> )
FH3 = HASH (...)

TH4 = NULL
FH4 = HASH (“IP Lookup”)

TH5 = NULL
FH5 = HASH (“Your IP is ”)

TH6 = HASH ( <b> )
FH6 = HASH (...)

TH7 = NULL
FH7 = HASH (“10.0.0.4”)

c) Summary at P3
(c) Summary at P3

Figure 4: An example scenario of consensus construction. The three returned summaries are shown in Figure (a) - (c), where Figure (a) and (c) correspond to
cases where the original document (Figure 2) is received without manipulation; Figure (b) corresponds to a censorship case. The full-hashes of the internal
tree nodes are omitted for brevity.

TH1 = HASH ( <html> )
FH1 = HASH (...)

TH2 = HASH ( <title> )
FH2 = HASH (...)

TH3 = HASH ( <body> )
FH3 = HASH (...)

TH4 = NULL
FH4 = HASH (“IP Lookup”)

TH5 = NULL
FH5 = HASH (“Your IP is ”)

TH6 = HASH ( <b> )
FH6 = HASH (...)

NON-CONSENSUS

Figure 5: The consensus result for the example scenario shown in Figure 4.
The consensus version accurately reflects the original document, with the
exception of the profile-based content.

tent comparison based on metrics such as edit distance (see Sec-
tion 2), they usually impose a significant overhead that is too ex-
pensive for online processing. We adopt a simple and efficient tree
alignment that employs breadth first search.

The algorithm starts from the roots of the MHTs, and traverses
recursively through the MHTs in a top-down fashion. For each
tree node, we compute the majority consensus for the full-hashes
and tag-hashes (lines 10-13): if a majority of the proxies agree on
the same full-hash, which indicates that a majority consensus has
been reached for the complete subtree rooted by that tree node, then
the whole subtree is copied into the final consensus tree (lines 14-
16); otherwise, if the corresponding tree nodes in a majority of the
summaries have the same tag-hash, we heuristically assume that
these tree nodes correspond to the same fragment in the HTML but
disagree on the contents, in which case, that tree node is copied
into the final consensus tree (lines 18-20), and the BFS algorithm
will construct the consensus version of the corresponding subtree
when the children nodes are visited (lines 21-28). If neither a tree
node’s full-hash nor its tag-hash are present in a majority of the
MHTs, no consensus can be drawn, and the node is marked as
NON-CONSENSUS (lines 29-31).

To illustrate, Figure 4 presents an example scenario of consensus
construction in which the client wants to construct a consensus ver-
sion based on the summaries returned by proxies P1, P2, and P3.
Figure 4(a)-(c) corresponds to the summaries returned by the three
proxies, where P1 and P3 managed to retrieve the original webpage
(shown in Figure 2) with slight variations according to their current
IP addresses, and P2 received a partially altered version.

Figure 5 shows the result of executing the consensus construc-
tion algorithm (Algorithm 1). The three roots share the same tag-
hash, yet their full-hashes differ from each other. Therefore, the
root of the consensus MHT is assigned a tag-hash of html, and
the BFS construction continues to the children nodes. For the left
branch, the three summaries have the identical full-hash, indicat-
ing a consensus on the complete title element. In contrast, for the
right branch, a majority consensus (2 out of 3) is reached for the

text “Your IP is”, but no consensus can be drawn for the IP address
part, as this “profile-based” content varies amongst the proxies.

3.4 Proxy Selection
The quality of the final consensus relies on the summaries re-

turned from the selected proxies. To achieve reasonable perfor-
mance, a Senser client needs to select a relatively small number of
proxies from the pool of all available proxies. Rather than selecting
the proxies at random, we discuss in this section methods for proxy
selection that mitigate the potential damage caused by a malicious
AS. Conceptually, this is achieved by maximizing the diversity of
the AS-level paths from the proxies to the destination web server.

DNS consensus. To determine the AS-level paths, we need to
know the IP address of the destination web server. This task is more
complex than it appears: we cannot rely on the DNS resolution
results retrieved locally, since doing so would create a single point-
of-failure (i.e., an adversary can poison the DNS server or hijack
the DNS request/response to point the client to a fake destination).

To resolve this issue, our approach takes into account the DNS
resolution results at the proxies collectively. Based on the assump-
tion that a majority of the proxies are benign and are not subject
to a man-in-the-middle attack, the client forwards DNS requests
through secure communication channels to q randomly selected
proxies to perform the DNS resolution on its behalf. If bq/2c + 1
proxies return the same IP address, then that IP is accepted.

One source of complication comes from the use of a reverse
proxy, at companies such as Google, for performance optimization
and load balancing purposes. These companies deploy a large num-
ber of servers with different IP addresses to handle the requests for
popular web content. However, given the nature of reverse proxies,
these IP addresses often reside within the same AS, and hence users
would be likely to observe the same AS-level path when accessing
the web content from these IP addresses (though the content may
be hosted on different servers). If bq/2c + 1 proxies return IP ad-
dresses located in the same AS (as locally determined by the client
using a compact database such as GeoMind), then the client accepts
an IP address chosen randomly amongst the addresses in that AS.

The use of content distribution networks (CDNs) such as Aka-
mai further complicates the problem. Here, a given URL may be
mapped to multiple IP addresses that correspond to cache servers
distributed over the world.

If the proxy selection process cannot reach a consensus on the
IP address of the destination website, it falls back to selecting the
proxies uniformly at random. Otherwise, if an IP consensus can be
reached, it then adopts the AS-disjoint proxy selection algorithm,
described next.

AS-disjoint routes. After it has determined the IP address for
the destination, the client next needs to determine the paths which
the available proxies take to reach the destination. This is done by



AS15169

AS3356

1.0

AS2152

1.0

AS17716

1.0

AS3303

1.0

AS2200

1.0

AS20965

1.0

AS2500

1.0

AS3549

1.0

AS7521

1.0

AS137

1.0

AS2914

0.0

AS3267

0.0

AS1299

0.0

AS6327

1.0 0.0

AS3303b

1.0

AS12925

SINK

1.0

AS25

1.0

1.0

AS9264

1.0

AS4538

1.0

1.0

AS1955

0.0

AS2012

0.0

0.0

AS2683

0.0

AS20965b

1.0

AS1213

1.0

1.0

AS8501

AS1887

0.0

AS12464

0.0

AS5617

0.0

0.0

AS271

1.0

1.0

AS7660

1.0

AS1916

1.0

1.0

AS680

0.0

AS2852

0.0

AS2907

1.0

AS2603

1.0

AS1741

1.0

1.0

AS38018

AS38022

0.0

AS9431

0.0

0.0

AS3836

1.0

AS4767

1.0

1.0

1.0

AS7385

0.0

0.0

AS1930

0.0

1.0 0.0

0.00.0

1.00.0

0.0

0.0

Figure 6: The AS-level disjoint paths for the example scenario. The se-
lected endpoint ASes include AS271, AS12925, AS1213, AS25, AS4538,
AS2200, AS1916, AS1741, AS4767, and AS137.
utilizing an Internet mapping service such as iPlane Nano [18] that
infers the AS-level path between two arbitrary IP addresses without
performing active Internet measurements2.

We select the “best” proxies according to the constructed AS-
level graph. Generally speaking, we consider two properties: dis-
jointedness and randomness. We want disjointedness in order to
make it more difficult for a single adversary to affect the quorum
by controlling a single AS. If the paths are disjoint, they have to
control an AS on at least dk/2e paths to create their quorum. How-
ever, randomness is also important: if an adversary can determin-
istically calculate which proxies will be selected, it can carefully
position rogue proxies in a manner that significantly increases the
probability that its proxies will be selected. Section 4.4 discusses
such a potential attack and its countermeasures in greater detail.

To find vertex-disjoint paths, we adopt the max-flow algorithm:
we split each vertex with multiple incoming and outgoing edges in
two — an in-node and an out-node — where all incoming edges are
connected to the in-node, all outgoing edges are connected to the
out-node, and the in-node and out-node are connected by exactly
one edge. We then set all edges to have a weight of 1.0, and run the
max-flow algorithm on the constructed graph. The max-flow result
corresponds to the maximal number of vertex-disjoint paths, based
on which we can select the proxies that maximize the path diversity.
If the number of disjoint path is smaller than the desired number of
proxies, we iteratively relax the weights of the bottleneck edges in
the graph in order to find the “more disjoint” paths.

The max-flow algorithm produces disjoint AS-level paths. To
complete the proxy selection and add randomness to the selections,
a random proxy is picked from each selected endpoint AS.

An example scenario. To illustrate the proxy selection process,
we consider a webpage request to http://google.com. Google has
deployed reverse proxies, making it difficult to reach a consensus
on the DNS resolution. However, all of the resolved IP addresses
reside within the same subnet and belong to the same AS. The client

2Due to the current unavailability of iPlane Nano, we use the
iPlane [19] service to query AS-level paths between all available
proxies and the Alexa top sites, and record the results in a concise
Internet “map” that is loaded with the Senser client software.

randomly selects an IP from these resolved IP addresses, and then
determines the AS-level paths from each individual proxy to that
IP using the Internet mapping service. For example, for the proxy
with IP address 169.229.50.15, our iPlane-based database returns
the AS path AS25 → AS2152 → AS15169.

Figure 6 depicts the constructed graph based on the paths from
the available proxies. (Note that both AS3303 and AS20965 are
each split into two vertices that are connected by a single edge.
This reflects the above constraint that each AS should be included
in at most one AS-disjoint path.) The numbers associated with the
edges show the execution result of the max-flow algorithm. The
graph has a max-flow of 10, indicating that it can accommodate at
most 10 AS-disjoint paths. The client selects proxies that are lo-
cated in endpoint ASes that connect to the sink with edges labeled
1. If more proxies are needed, the edges can be relaxed to accom-
modate more paths (which are no longer necessarily disjoint). For
instance, if the edge between AS3303 and AS3303b is relaxed, a
proxy located at AS9431 can then be added to the selection.

4. PRACTICAL ISSUES
We next discuss potential limitations of the Senser architecture

(Section 4.1) and optimizations (Sections 4.2 through 4.4).

4.1 HTTP POST Requests and Cookies
Senser does not currently support POSTs or GETs that cause

side-effects (the latter of which violate HTTP GET semantics, but
are unfortunately not uncommon on the web). The incompatibili-
ties arise from Senser’s dependence on multiple vantage points to
verify web content. A single non-idempotent request’s are ampli-
fied because each proxy causes a state change on the server.

For many websites, these multiple and near-identical requests
may be caught by the service and considered only once. (Such
techniques are often applied, for example, to prevent credit card
transactions from being issued multiple times.) Since the web cur-
rently has no standard protocol in place for handling concurrent
and identical requests, we conservatively disable support for HTTP
POSTs in Senser, and (perhaps optimistically) assume that GET
requests are idempotent and side-effect-free.

We note that while our incompatibility with HTTP POSTs and
GETs that are not effect-free makes Senser inappropriate for many
websites, the use of non-idempotent operations over unprotected
HTTP (i.e., without SSL) is ill-advised in many cases (in particular,
for site logins). Preventing such capabilities may be disruptive to
the user, but it may also protect the user.

As a future enhancement, Senser may be amended to offer some
support for HTTP POSTs by relaying POSTs requests through a
single, randomly chosen proxy. Alternatively, clients may apply a
secure reputation system (cf. [14]) to rate proxies, and relay POSTs
through a proxy with a sufficiently high reputation score.

We similarly have limited support for cookies. Since many sites
rely on cookies to manage state and present a cohesive user expe-
rience, Senser adopts the cookies returned by a randomly selected
proxy, and forwards those cookies in subsequent HTTP requests.

4.2 Incremental Consensus Construction
Senser forwards HTTP requests to multiple proxies, providing

the opportunity to construct the consensus incrementally as responses
arrive. Rather than waiting for all the summaries to be returned,
the client checks whether a top-level MHT consensus (out of all
the selected proxies; not out of only the proxies from which a re-
sponse has been received) has already been reached whenever a
new summary is received. If a consensus can be reached, the client
can conclude on that consensus without waiting for the remaining



summaries. If there is no consensus at the top level of the hash tree,
Senser waits for all summaries before constructing a “majority ver-
sion” of the webpage. (This is because a “majority version” of the
webpage is created given any input, so it is difficult to determine
when the consensus construction algorithm can be run without ill
effect before all the summaries have been received.)

DNS lookup requests are handled in a similar fashion: When
possible, the client chooses an IP to satisfy the lookup before replies
from all proxies have been received.

The repeated invocation of consensus construction consumes more
computation resources. However, the additional computation over-
head is overshadowed by its benefits: given the long-tail distri-
bution of different proxies’ latencies, it effectively improves the
time-to-first-byte latency by eliminating the effects of slow, cor-
rupt, and/or failed proxies.

4.3 Caching
Senser also benefits from the adoption of multiple caches. When

the same URL is requested, the use of caching saves considerable
overhead at several stages of Senser’s operation. In particular, the
consensus IP of the web server that hosts a given URL as well as
the routes from each proxy to the resolved IP address are unlikely to
change frequently, and therefore benefit from client-side caching.
In addition, it is typical in web browsing that multiple visits to the
same website occur within a short period of time (e.g., clicking
links on a portal webpage such as yahoo.com for reading about
related topics). In such scenarios, the client can additionally cache
proxy selection results to further reduce latency overheads. Senser
does not cache a webpage or the MHT constructed from that page.
Instead, the webpage is fetched each time it is requested by a client.

We evaluate the performance benefits of incremental consensus
construction and caching in Section 5.3.

4.4 Resistance to Knowledgeable Attackers
An adversary may attempt to game the proxy selection algorithm

presented in Section 3.4 by strategically placing malicious proxies
to maximize their chances of being selected for a targeted website.
More specifically, the attacker exploits instances in which there are
few AS-disjoint paths from the honest proxies to a targeted website.
If an attacker is able to add corrupt proxies to the network that
are AS-disjoint from the existing proxies w.r.t. the targeted site,
then the adversary increases the likelihood that the corrupt proxies
will be disproportionately chosen for that site. That is, the proxy
selection algorithm will choose these proxies with high probability
to improve the route diversity, and as a result, the adversary gains
the control of a significant portion of the selected proxies.

To counter such an attack, we introduce additional randomness
into the proxy selection algorithm. Instead of definitively select-
ing the proxies that maximize AS-level path diversity, we con-
duct a weighted randomized selection from the proxies. This ap-
proach strikes a balance between randomness (to counter the ex-
ploit presented above) and path diversity (to limit the potential dam-
age caused by a malicious AS). Here, we introduce a parameter,
α ∈ [0, 1], that determines the level of randomness used to select
proxies. If k is the number of desired proxies, the modified algo-
rithm selects bαkc proxies using the AS-disjoint algorithm from
Section 3.4 and dk(1 − α)e proxies uniformly at random from
the remaining (unchosen) proxies. We explore the performance-
security tradeoffs of selecting α in Section 5.4.

5. EVALUATION
This section evaluates Senser’s effectiveness and efficiency. In

Section 5.1, we describe our implementation of Senser. We ex-
amine the accuracy of constructed consensus pages in Section 5.2

and measure the performance of our implementation in Section 5.3.
Using topologies constructed from real-world trace data, we con-
duct simulation experiments to assess Senser’s ability to mitigate
censorship in Section 5.4.

5.1 Experimental Setup
Senser consists of two core components: (i) a client-side appli-

cation that intercepts browser requests and constructs a consensus,
and (ii) a proxy that retrieves requested URLs and returns the result-
ing MHT. We use the JSoup HTML parser to normalize webpages
and the GNU Crypto implementation of the Tiger hash function.
Tiger was chosen for its fast performance on 64bit architectures –
in our benchmarks, it was approximately 50% faster than SHA-2.

Clients run an instance of the Firefox browser that has been con-
figured to forward requests through the local Senser client (which
itself acts as an HTTP proxy). To obtain meaningful performance
results, we disable both memory and disk caching in Firefox. The
Senser client communicates with Senser proxies using a custom
HTTP API secured with SSL.

In our experiments, the Senser client and proxies use a 24 thread
pool to respond to requests. Firefox was configured to allow up to
24 concurrent HTTP requests.

We deploy 12 Senser proxies on Amazon EC2 in four separate
regions (US East, Brazil, Ireland, and Singapore), with three prox-
ies per region. In our experiments, we set k = 11. The client
utilizes a Verizon FIOS broadband connection in Washington, DC.

5.2 Consensus Construction Accuracy
To minimize latency, we trade off efficiency for optimality: while

our consensus construction algorithm is efficient, it does not achieve
the optimal solution (which requires exponential time [3]). To de-
termine how often our consensus algorithm is able to construct a
usable webpage, we evaluate our algorithm against websites cho-
sen from the Alexa “top 1,000” list, which we will refer to as the
Alexa websites. We visited the top pages of each of these 1,000
websites and additionally randomly clicked five selected links on
each site.

We manually viewed a screenshot of each page that was success-
fully retrieved and determined whether (i) the page was rendered
correctly, (ii) the page was rendered with errors but was still us-
able, or (iii) the page was not usable. Cases where the page had
errors but was still usable were sometimes caused by CSS (Cascad-
ing Style Sheets) that varied across different regions. For example,
a page that is usable with errors might display the correct content
(with the exception of ads) but have excessive whitespace.

In order to better understand what types of websites our consen-
sus construction algorithm supports, we split up the 1,000 websites
into their Alexa categories and computed the success rate for each
category. The results are shown in Table 1. A majority of web-
sites either render correctly or are usable with errors. The highest
success rate was obtained with the World category, which contains
many region-specific websites that are unlikely to serve localized
content (e.g., chinanews.com, a large state-owned news agency).

5.3 Performance
We measure Senser’s performance by recording the time-to-last-

byte (TTLB) for each of the 1,000 Alexa websites. For each web-
site, we retrieve the top page, follow five links on the site, and
record the average TTLB of the requests. TTLB is obtained using
the Selenium WebDriver3 Firefox add-on and includes the amount
of time taken to fully load and render each page, including all re-
sources directly linked to on a page as well as any resources indi-
3http://seleniumhq.org/

http://seleniumhq.org/


Table 1: Consensus construction accuracy, by website category.

Category % of tested sites Failures Usable Correct
with errors

All 100.0% 39.3% 12.0% 48.8%
Uncategorized 33.7% 38.3% 11.0% 52.2%
World 32.4% 27.7% 12.2% 59.5%
Computers 10.3% 56.0% 11.3% 32.3%
Regional 6.2% 48.2% 11.7% 39.1%
Business 2.4% 46.9% 7.1% 45.1%
Shopping 2.3% 57.7% 10.8% 29.7%
Sports 2.2% 30.8% 23.1% 46.2%
Reference 1.5% 62.2% 8.1% 29.7%
Home 1.4% 52.9% 20.6% 23.5%
News 1.3% 43.5% 6.5% 50.0%
Society 1.3% 45.0% 18.3% 41.7%
Games 1.0% 58.7% 23.9% 13.0%
Recreation 1.0% 71.4% 6.1% 22.4%
Adult 0.8% 47.2% 36.1% 16.7%
Arts 0.8% 39.5% 13.2% 47.4%
Kids and Teens 0.8% 36.1% 13.9% 50.0%
Science 0.6% 46.7% 10.0% 43.3%
Health 0.1% 100.0% 0.0% 0.0%
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Figure 7: Cumulative distribution of time-to-last-byte, with and without
performance optimizations.

rectly loaded with Javascript. We additionally measure the effects
of our optimizations (described in Sections 4.2 and 4.3).

Figure 7 shows the cumulative distribution of the resulting aver-
age TTLBs when loading sites with Senser, without Senser, and
with Senser when optimizations were disabled. Without optimiza-
tions the majority of websites took under 14 seconds to load, incur-
ring a 7-fold increase in the median TTLB when compared against
directly accessing a page. As shown in the Figure, Senser’s over-
head can be reduced considerably by enabling the optimizations.
With optimizations enabled, the majority of websites can be loaded
in under 8 seconds. Websites hosted in distant geographic regions
took the longest to load in all cases, as would be expected.

Microbenchmarks. To better understand Senser’s performance
costs, we measure the average run time of each of the system’s
components on the top 50 Alexa websites.

Figure 8 shows the processes that contribute to the time it takes to
access a website with Senser due to the DNS and MHT consensus
procedures. The Figure’s key identifies each process, with Other
collectively representing the time for serializing and deserializing
the MHT from the proxies to the client, and the time for choosing
the random nodes. The average total time taken is less than the sum
of the time taken by the DNS Consensus and MHT Consensus steps
because DNS lookups can often be handled by the cache.

Network communication makes up the majority of the time it
takes to load a page: DNS Consensus is the time taken to receive
DNS lookup results from the proxies, Receive MHT is the time
taken to receive MHTs from the proxies, and Fetch Page is the time
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Figure 8: Average time taken by various operations. The notation (c) in-
dicates an operation happens on the client and (p) indicates an operation
happens on the proxies.

taken by the proxies to receive the destination webpage. This is not
unexpected given the diverse locations of our proxies.

5.4 Simulation Study
To better understand the effect of malicious ASes on

Senser’s ability to reach a consensus and resist censorship attempts,
we evaluate Senser under simulation using realistic network topolo-
gies. To perform the simulation we obtained AS-level graphs of the
routes between a set of 18 geographically diverse proxies and the
Alexa websites. Each graph was obtained by querying iPlane [19]
for the AS-level paths between each proxy and the Alexa websites.
The proxies were PlanetLab nodes in the following regions: Brazil,
Canada, China, Czech Republic, Finland, France, Germany, Hun-
gary, Ireland, Italy, Japan, Poland, Portugal, Russia, Slovenia, Thai-
land, United States (east coast), and United States (west coast).

For each of the Alexa websites, we randomly designate n% of
the ASes appearing in the graph as malicious ASes and choose k
proxies to use to reach the website. We say that our proxy selection
algorithm failed if at least half of the routes pass through a mali-
cious AS. (The inverse does not necessarily mean that the attempt
to visit the website would have succeeded, since malicious proxies
could have prevented a consensus from being reached.) We repeat
this process 1,000 times for each website and take the average of
their outcomes.

We divide ASes into three groups: top-tier ASes, transit ASes,
and endpoint ASes. Top-tier ASes are those that contain at least 5%
of all ASes in their customer cone according to CAIDA4. Any AS
that contains either a proxy or an Alexa website is designated as an
endpoint AS. The remaining ASes are designated transit ASes. We
vary the types of ASes that are malicious to see how an adversary’s
capabilities affect Senser’s failure rate.

Figure 9 shows Senser’s random proxy selection algorithm’s fail-
ure rate as n, the number of malicious proxies, increases. We vary
n to determine how the algorithm responds to different situations.
The failure rate is the worst when only top-tier ASes become ma-
licious, as one would expect. It takes over five malicious ASes for
the failure rate to reach 50% with the other AS sets. The transit
only line never reaches 1.0 because some paths are composed en-
tirely of endpoint and top-tier ASes. Since endpoint ASes are those
that appear as an endpoint in any of the graphs, it is possible for an
“endpoint AS” to be a transit AS in some graphs.

We compare the random proxy selection algorithm shown in Fig-
ure 9 to our AS-disjoint proxy selection algorithm. The latter AS-
aware technique performs better in most situations, but does not

4http://as-rank.caida.org/

http://as-rank.caida.org/
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Figure 9: Random path selection simulation (varying n).

Table 2: Failure rate comparison of randomization vs. AS-disjoint proxy
selection (varying n).

ASes top-tier any any but transit only
only top-tier

1 0.01 (5%) 0.00 (4%) 0.00 (2%) 0.00 (5%)
5 0.02 (3%) 0.04 (10%) 0.03 (11%) 0.03 (15%)
10 0.00 (0%) 0.05 (6%) 0.07 (10%) 0.07 (12%)
15 0.00 (0%) 0.01 (1%) 0.02 (2%) 0.04 (5%)
20 0.00 (0%) 0.00 (0%) 0.00 (0%) 0.02 (2%)

when only top-tier ASes can be malicious, because the max-flow
based proxy selection algorithm is inclined to select top-tier ASes
that have high degrees. We vary the types of ASes that are mali-
cious to observe how effective Senser is against different types of
adversaries. Table 2 highlights the difference between the random
algorithm’s and the AS-disjoint algorithm’s failure rates and the
AS-disjoint algorithm’s percent improvement over the random al-
gorithm. The difference is highest with the “transit only” AS types
with the AS-disjoint algorithm performing up to 15% better. This
is due to the fact that the AS-disjoint algorithm is able to avoid
having a transit AS (unlike a top tier AS that is more difficult to
avoid) appear in multiple paths, which would otherwise be shared
by paths from multiple proxies if chosen randomly.

To see how the number of nodes affects the failure rate, we set
n = 11 (which roughly corresponds to a 40% failure rate with the
AS-disjoint algorithm when only transit ASes can be malicious)
and vary k, the number of proxies used. Figure 10 shows the effect
on the randomized algorithm; the effect on the AS-disjoint algo-
rithm is similar and is omitted for brevity. As the number of prox-
ies used increases, the failure rate for most AS types decreases until
about 13 or 15 proxies are used. The failure rate increases slighty
when only top-tier ASes are malicious, because the additional ma-
licious top-tier ASes have a high probability of routing the addi-
tional proxies’ traffic. Table 3 shows the difference between the
random algorithm’s and the AS-disjoint algorithm’s failure rate and
the AS-disjoint algorithm’s percent improvement over the random
algorithm. The AS-disjoint algorithm performs worse with only
top-tier ASes when k = 17, but performs the same or better in all
other cases, up to a 19% improvement for only transit ASes.

Weighted randomized selection algorithm. Section 4.4 ex-
plains an attack in which a knowledgeable adversary can use the
AS-disjoint proxy selection algorithm to increase his or her chances
of controlling a majority of the proxies selected. The weighted ran-
domized selection algorithm helps mitigate this attack by choos-
ing bαkc proxies using the AS-disjoint proxy selection algorithm
and dk(1 − α)e proxies using the random proxy selection algo-
rithm. Figure 11 shows how various α values perform when tran-
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Figure 10: Random path selection simulation (varying k).

Table 3: Comparison of randomization vs. AS-disjoint proxy selection
(varying k).

Proxies top-tier any any but transit only
only top-tier

1 0.01 (1%) 0.03 (6%) 0.04 (8%) 0.04 (11%)
5 0.02 (2%) 0.05 (11%) 0.05 (14%) 0.05 (19%)
9 0.02 (2%) 0.04 (10%) 0.03 (13%) 0.03 (17%)
13 0.02 (3%) 0.03 (7%) 0.02 (8%) 0.02 (14%)
17 -0.01 (-2%) -0.01 (-4%) -0.01 (-4%) -0.02 (-12%)

sit and endpoint ASes are malicious (α = 1 reduces to the pure
AS-disjoint proxy selection algorithm and α = 0 reduces to the
pure randomized proxy selection algorithm). An α as low as 0.3
shows a clear improvement over the randomized proxy selection
algorithm when k ≥ 11 and the improvement increases as α does.
A higher α is not always better, however, because the proxy se-
lection algorithm becomes more predictable as α increases. An α
of 0.5 prevents the majority of proxies from being chosen by the
potentially vulnerable AS-disjoint proxy selection algorithm while
reducing the random algorithm’s failure rate for k ≥ 11.

5.5 Evaluation Summary
We demonstrated the effectiveness and efficiency of Senser through

a combination of actual deployment on Amazon EC2 nodes and
simulations using a dataset of PlanetLab proxies. In our evaluation
using the Alexa top 1,000 websites, Senser was able to accurately
detect censorship in many scenarios for a majority of sites.

In addition, under several likely attack scenarios, our AS-disjoint
proxy selection effectively reduced the potential impact of mali-
cious ASes. Our studies also showed that increasing the number of
proxies hedges the risk in the presence of malicious ASes.

6. CONCLUSION
This paper introduces a system for validating retrieved web con-

tent in the presence of AS-level adversaries. Senser operates by
forming a consensus of the requested web content using multiple
proxies located at diverse vantage points in the network. By us-
ing an AS-aware proxy selection algorithm, Senser achieves good
network diversity, and in many instances, prevents even large au-
tonomous systems from undetectably altering requested web con-
tent. We validate our approach by using both simulations and a test
bed deployment to show our system accurately detects the mali-
cious modification of retrieved web content for a majority of sites
in many conservative attacker configurations. Senser’s practical
approach improves the ability to detect censorship on the web over
the current status quo, with no service or software modification re-
quired on end host providers. We show this to be essential, as 75%
of the Alexa Top 1,000 sites do not provide SSL/TLS.
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A. A SURVEY OF SSL SUPPORT
In order to quantify the level of SSL adoption of popular web-

sites, we tested the ability of Alexa top-100, 1k, 10k, and 100k sites
to support TLS/SSL (HTTPS) connections. Table 4 reports our re-
sults. “No page found” errors reflect cases in which an HTTPS
connection could be established, but the server returned a 404 error.
In several cases, there was a 301 or 302 redirect from the HTTPS
page to the HTTP page. To err on the side of inclusion, we con-
sider “successes” (i.e., SSL to be supported) as any case in which
an SSL certificate existed, even if the certificate was misconfigured
(i.e., did not report the correct domain name). The total successes
and failures for each Alexa dataset are reported in the Table. As
can be seen, a vast majority of the top websites on the web do not
offer proper SSL connections.

Table 4: SSL support on the web.

Status Top 100 Top 1k Top 10k Top 100k
Connection refused 42 (42%) 512 (51%) 5679 (57%) 59362 (60%)
No page found 2 (2%) 15 (2%) 122 (1%) 1185 (1%)
Redirect to HTTP 15 (15%) 195 (20%) 1740 (17%) 12305 (12%)
Total Success 41 (41%) 278 (28%) 2459 (25%) 27148 (27%)
Total Failure 59 (59%) 722 (72%) 7541 (75%) 72852 (73%)
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