
Privacy-Preserving Collaborative Verification Protocols

Andreas Haeberlen† Mingchen Zhao† Wenchao Zhou†

Alexander J. T. Gurney† Micah Sherr‡ Boon Thau Loo†

† University of Pennsylvania ‡ Georgetown University

Abstract

We outline our vision of large-scale distributed systems
that efficiently combine privacy and verifiability. In the
systems we envision, a group of nodes would be able to
verify that a given node Ni has been executing a given
algorithm A(Ni). If successful, the verification would
not reveal any additional information.

1 Introduction
Security and privacy are both important goals for large-
scale distributed systems. In systems with hundreds
of nodes that are spread across different administrative
domains, it is not uncommon that some nodes fail to
correctly perform their assigned functions – e.g., be-
cause they have been manipulated or compromised by
an adversary, or simply because of hardware defects or
software bugs – and such faults are not always easy to
see from a single domain. It would be useful if nodes
from different domains could verify collaboratively that
each node in the system is working as expected. How-
ever, this entails an exchange of additional information,
which not all domains are comfortable with.

This tension between security and privacy is visible
today, e.g., in the Internet’s interdomain routing sys-
tem. Internet routers can fail for a variety of reasons,
and this results in a substantial amount of connectiv-
ity loss [6]. Solutions for detecting large and gen-
eral classes of faults are available today [4], but they
are being criticized for requiring ISPs to disclose addi-
tional information, e.g., the routing messages they have
been exchanging with other ISPs, since this could po-
tentially reveal sensitive information about an ISP’s net-
work setup or its routing policies.

At first glance, this dilemma between security and pri-
vacy seems hard to avoid: how can we tell whether a
node is working correctly, without knowing what specif-
ically the node did? Thus, most existing solutions have
chosen one or the other: they either provide good pri-
vacy, with correspondingly weak security guarantees, or
they choose to trade some privacy for better security.

However, there is evidence that applications do not
have to make this choice: it is possible, in a sense, to
have your cake and eat it too. Next, we state this prob-
lem more formally, and we present initial evidence that
security and privacy can be combined efficiently.

2 The Private Verification problem
We consider a system with a set of nodes N :=
{E,C1, . . . , Ck} that can communicate via message
passing. An arbitrary subset S ⊆ N of the nodes may be
controlled by a malicious adversary. Let A be the algo-
rithm that E is expected to use. We say that E is correct
in a finite execution e of this system if the steps it has
taken in e conform to A(E); otherwise we say that E is
faulty. V (N,A,E) is a private verification protocol if
it has the following properties when it is run after any
finite execution e:

• Nontriviality: Every correct node Ci eventually
outputs either OK or FAIL.
• Detection: If E is detectably faulty in e and S =
{E},1 all correct Ci will output FAIL.
• Accuracy: If E is correct in e, each correct Ci will

output OK.
• Confidentiality: If V (N,A,E) is run and E is

correct, no Ci learns any information it did not al-
ready know before the run, except that E is correct.

Briefly, E is detectably faulty if its network-visible be-
havior, as observed by the correct nodes, is inconsistent
with any correct execution of A(E). For instance, if E
sends a single bad message m to another faulty node
Cj but otherwise follows A(E), E is faulty but not de-
tectably faulty, since Cj may choose not to reveal m to
the other nodes. See [5] for a more formal definition.

3 Strawman solutions
It is possible to approximate private verification us-
ing heavyweight cryptographic techniques. For in-
stance, we can use general-purpose zero-knowledge
proofs (ZKPs) [2]; however, the high overhead of ZKPs
would be prohibitive for many applications. Another ap-
proach is to have the Ci compute E’s expected outputs
via secure multi-party computation (MPC) [1], and to
then compare these outputs to the ones that were actu-
ally observed. But MPC is practical only for very sim-
ple functions. Moreover, this approach seems wasteful
because private verification is a simpler problem than
MPC: it merely requires the verification of a computa-
tion that was already performed by E.

1This definition is just a first step; it would be interesting to allow
larger subsets of N here.

1



4 Approach: Collaborative verification
To enable private verification for realistic applications,
we are exploring a different approach. We observe that
each of the Ci already knows some facts about E’s ex-
ecution: it may have sent certain messages to E, and
it may have received certain other messages from E.
Moreover, the Ci collectively know the entire network-
visible behavior of E. Hence, we can try to break the
overall task of verifying E’s execution into smaller sub-
tasks, such that a) each subtask can be completed by
at least one Ci, using only on information that Ci al-
ready knows, and b) successful verification of all sub-
tasks implies successful verification of E’s entire exe-
cution. We call the result a collaborative verification
protocol (CVP).

4.1 Sketch of a generic CVP
To see that this is possible at least in principle, consider
the following sketch of a simple (but highly impractical)
protocol. E enumerates all the finite execution prefixes
it could have completed by the time verification is trig-
gered. It then instantiates a bit vector with one bit for
each execution prefix, and sets all bits to zero except
for the one that corresponds to the actual execution. E
then constructs a Merkle hash tree [7] over the bits, signs
the top-level hash value, and publishes it to all the Ci;
this ensures that equivocation can be detected. Next, E
determines, for each Ci, the set of executions that are
inconsistent with the messages Ci has exchanged with
E earlier, and it proves to each Ci that the correspond-
ing bits are zero (by revealing the hashes along the path
from the bits to the root). If a correct Ci does not receive
a proof for a bit that is inconsistent with what it has seen,
it broadcasts a challenge to the other Ci; if a bit is not
zero, the corresponding proof is a proof of misbehavior.

If all Ci complete this step correctly, they have collec-
tively ruled out all executions that would be inconsistent
with E’s observable behavior [5]. However, no Ci has
learned anything it did not already know before the ver-
ification: if a good hash function is used, it is infeasible
to learn the values of the bits from the tree’s internal
hash values, and the recipients of the bit proofs already
know that the bits must be zero if E is correct, so they
do not learn anything new from them. If verification
succeeds, the only new information is that E is correct.

This approach seems attractive because it requires lit-
tle cryptographic mechanism; all that is needed is a
good hash function and a bit of public-key cryptogra-
phy. However, it is clearly impractical to reserve a bit
for every possible prefix of E’s execution, so an obvi-
ous challenge is to find a more compact representation
of this set. This is not straightforward because the rep-
resentation must itself be private, i.e., its structure must
not reveal any private information.

5 Status
As an existence proof that such representations can
be found for practical applications, we have developed
PVR, a collaborative verification system for the Inter-
net’s interdomain routing protocol [3, 8]. We have
proven that PVR can provide a variant of the guaran-
tees in Section 2, and we have shown that its overhead
is low enough to be run for current routing table sizes
in real time, and on commodity hardware. The protocol
from [8] is domain-specific, but we have since devel-
oped generic variants that are currently under submis-
sion: one of them can be used for any A(E) that eval-
uates a predicate on boolean inputs provided by the Ci,
and another works for any A(E) that can be formulated
as a deterministic finite automaton.

6 Ongoing work
These protocols are evidence that private verification is
general, and none of them use expensive cryptographic
primitives. However, before CVPs can be widely appli-
cable, several challenges remain to be solved, e.g.:
Optimizations: State machines are general but not nec-
essarily efficient; for instance, a naı̈ve state machine for
a 64-bit counter would have 264 states! Fortunately, re-
alistic state machines tend to have a regular structure
that can be exploited for optimizations. We have already
developed one such optimization for numeric variables
and simple arithmetic operations on them.
Stronger threat models: Our current protocols require
the assumption that nodes do not collude; we would like
to strengthen our protocols and remove this assumption.
Tool support: We are developing a protocol generator
that can automatically produce CVPs from a specifica-
tion of A(E) written in a simple programming language.

References
[1] O. Goldreich, S. Micali, and A. Wigderson. How to play any

mental game. In Proc. ACM STOC, 1987.
[2] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield

nothing but their validity or all languages in NP have zero-
knowledge proof systems. J. ACM, 38:690–728, 1991.

[3] A. Gurney, A. Haeberlen, W. Zhou, M. Sherr, and B. T. Loo. Hav-
ing your cake and eating it too: Routing security with privacy
protections. In Proc. HotNets, Nov. 2011.

[4] A. Haeberlen, I. Avramopoulos, J. Rexford, and P. Druschel. Net-
Review: Detecting when interdomain routing goes wrong. In
Proc. NSDI, Apr 2009.

[5] A. Haeberlen and P. Kuznetsov. The Fault Detection Problem. In
Proc. OPODIS, Dec. 2009.

[6] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
misconfiguration. In Proc. ACM SIGCOMM, Sep 2002.

[7] R. Merkle. Protocols for public key cryptosystems. In Proc. Sym-
posium on Security and Privacy, Apr. 1980.

[8] M. Zhao, W. Zhou, A. Gurney, A. Haeberlen, M. Sherr, and B. T.
Loo. Private and verifiable interdomain routing decisions. In
Proc. SIGCOMM, 2012. (accepted, pending shepherd approval).

2


