Answering Why-Not Queries in Software-Defined Networks
with Negative Provenance

Yang Wu Andreas Haeberlen
University of Pennsylvania University of Pennsylvania

ABSTRACT

When debugging an SDN, it is sometimes necessary to ex-
plain the absence of an event: why a certain rule was not in-
stalled, or why a certain packet did not arrive. Existing SDN
debuggers offer some support for explaining the presence of
events, usually by providing the equivalent of a “backtrace”
in conventional debuggers, but they are not very good at an-
swering “Why not?” questions: there is simply no starting
point for a possible backtrace.

In this paper, we show that the concept of negative prove-
nance can be used to explain the absence of events in SDNs.
Negative provenance relies on counterfactual reasoning to
identify the conditions under which the missing event could
have occurred. We outline a simple technique that can track
negative provenance in SDNs, and we present a case study
to illustrate how our technique can be used to answer con-
crete “Why not?” questions. Using our approach, it should
be possible to build SDN debuggers that can explain both the
presence and the absence of events.

Categories and Subject Descriptors

C.2.3 [Computer Systems Organization]: Computer-Com-
munication Networks—~Network Operations

General Terms
Algorithms, Design, Reliability

Keywords

Software-defined Networks, Debugging, Negative Provenance

1. INTRODUCTION

Finding problems in complex networks has always been chal-
lenging, as the substantial literature on network debugging
and root-cause analysis tools [4, 7, 10, 11, 13] can attest.
However, the advent of software-defined networking (SDN)
has added a new dimension to the problem: networks can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Hotnets ’13, November 21-22, 2013, College Park, MD, USA.

Copyright 2013 ACM 978-1-4503-2596-7 ...$10.00.

Boon Thau Loo
University of Pennsylvania

Wenchao Zhou
Georgetown University

now be controlled by programs, and, like all other programs,
these programs can have bugs. Finding such bugs can be
difficult because, in a complex network of routers, switches,
and middleboxes, they can manifest in subtle ways that have
no obvious connection with the root cause. It would be use-
ful to have a “network debugger” that can assist the network
operator with this task, but existing techniques tend to be
protocol-specific and cannot necessarily be applied to SDN's
with arbitrary control programs. Hence, as others [7, 17]
have observed, a more powerful debugger is needed.

Existing solutions, such as ndb [7] or SNP [20], approach
this problem by offering a kind of “backtrace”, analogous to
a stack trace in a conventional debugger, that can link an
observed effect of a bug to its root causes. For instance,
suppose the administrator notices that a server is receiving
requests that should have been handled by another server.
The administrator can then trace the requests to the last-hop
switch, where she might find a faulty rule; she can trace the
faulty rule to a statement in the controller program that was
triggered by a certain condition; she can trace the condition
to a packet from another switch; and she can continue to re-
cursively explain each effect by its direct causes until she
reaches a set of root causes. The result is the desired “back-
trace”: a causal chain of events that explains how the ob-
served event came to pass. We refer to this as the prove-
nance [1] of the event.

Provenance can be a great tool for debugging complex
interactions, but there are cases that it cannot handle. For
instance, suppose that the administrator observes that a cer-
tain server is no longer receiving any requests of a particular
type. The key difference to the earlier scenario is that the ob-
served symptom is not a positive event, such as the arrival of
a packet, that could serve as a “lead” and point the adminis-
trator towards the root cause. Rather, the observed symptom
is a negative event: the absence of packets of a certain type.
Negative events can be difficult to debug: provenance does
not help, and even a manual investigation can be difficult if
the administrator does not know where the missing packets
would normally come from, or how they would be generated.

Nevertheless, it is possible to construct a similar “back-
trace” for negative events, using the concept of negative
provenance [8]. The key insight is to use counterfactual rea-
soning, i.e., to examine all possible causes that could have
produced the missing effect. For instance, it might be the

o

SDN Controller
- Why does the HTTP serve
- Faulty not get any requests?
™ flow entry . [6)

H DNS and HTTP
requests

Internet DNS Server HT:I'P Server Admin

Figure 1: Negative event scenario: Web requests from the In-
ternet are no longer reaching the web server because a faulty
program on the controller has installed an overly general rule
in the leftmost switch (S1).

case that the missing packets could only have reached the
server through one of two upstream switches, and that one of
them is missing a rule that would match the packets. Based
on the controller program, we might then establish that the
missing rule could only have been installed if a certain con-
dition had been satisfied, and so on, until we either reach a
positive event (such as the installation of a conflicting rule
with higher priority) that can be traced with normal prove-
nance, or a negative root cause (such as a missing entry in
a configuration file). However, generating negative prove-
nance is substantially more challenging than positive prove-
nance, its dual “twin”, e.g., because it involves universal
quantifiers (absence of any relevant cause) rather than ex-
istential quantifiers (presence of a specific relevant cause).

Negative provenance could be a useful debugging tool
for software-defined networks, but so far it has not been
explored very much. A small number of papers from the
database community [3, 8, 14] have used negative prove-
nance to explain why a given database query did not return
a certain tuple, but we are not aware of any previous appli-
cations in the networking domain.

This paper is intended as a first step towards a negative
provenance system for debugging and forensics in software-
defined networks. We define a simple model for negative
provenance in this setting, as well as a technique for infer-
ring the provenance of a given negative event, and we de-
scribe a number of heuristics that can simplify the resulting
“backtrace” to produce more concise explanations. Finally,
we present results from a case study to illustrate how nega-
tive provenance can help diagnose realistic network prob-
lems. We hope that our approach will eventually lead to
a provenance-based debugger for SDNs that supports both
positive and negative events; we describe some of the re-
maining challenges in Sections 3.4 and 3.5.

2. OVERVIEW

2.1 Scenario: Network debugging

Figure 1 shows a simple example scenario that illustrates
the problem we are focusing on. A network administrator
manages a small network that includes a DNS server, a web
server, and a connection to the Internet. At some point, the

APPEAR(t=5s, DNS Server,
packet(@DNS Server, DNS))

RECV({=5s, S1-Isp, | L EXIST(E| [25 now, S1, VA0 ey ST(={0.5,n0w), ST,
packet((@81 DNS)) rule(@$1, PrioHigh, DNS Forward, Port5)) link(@S1, DNS Server, Port5))
SEND((5s ISP—S1, RECV(t=2s, S1~—Cvmmller APPEAR(I =0.5s, S1,
packet(@ISP, DNS)) rule(@$1, PrioHigh, DNS Forward, Port5)) link(@S1, DNS Server, Port5))
SEND(t=1.8s, CDntroueHsL
rule(@Controller, PrioHigh, DNS, Forward, Port5))

V7|
DERIVE(t=1.8s, Controller,
rule(@Controller, PrioHigh, DNS, Forward, Port5))

RECV (t=1.8s, Controller <-S1 EXIST(t=[0s,now], Controller,
packet(@Controller, DNS)) missHandler(@Controller, DNS, PrioHigh, DNS, Forward, Port5))

Figure 2: Positive provenance example, explaining how a
DNS packet made its way to the DNS server.

administrator notices that the web server is no longer re-
ceiving any requests from the Internet. The administrator
strongly suspects that the network is somehow misconfig-
ured, but the only observable symptom is a negative event
(the absence of web requests at the server), so there is no
obvious starting point for an investigation.

Today, the only way to resolve such a situation is to man-
ually inspect the network until some positive symptom (such
as requests arriving at the wrong server) is found. In the very
simple scenario in Figure 1, this is not too difficult, but in a
data center or large corporate network, it can be a consider-
able challenge. It seems preferable for the administrator to
directly ask the network for an explanation of the negative
event, similar to a “backtrace” in a conventional debugger.
This is the capability we seek to provide.

2.2 Positive provenance

For positive events, there is a well-understood way to gen-
erate such a “backtrace”: whenever an event occurs or some
new state is generated, the system keeps track of its causes,
and when an explanation is requested, the system recursively
explains each event with its direct causes, until it reaches a
set of “base events” (such as external inputs) that cannot be
explained further. The result can be represented as a DAG, in
which each vertex represents an event and each edge a direct
causal relationship. In the database literature, this is called
the provenance [1] of the event; to distinguish it from nega-
tive provenance, we will refer to it as positive provenance.

Figure 2 shows an example that explains why a DNS re-
quest appeared at the DNS server at time ¢ = 5 (V1). The
DNS server had received the packet from switch S1, which
in turn had received it from the Internet (V2—-V3); the switch
was connected to the DNS server via port #5 (V10-V11)
and had a flow entry that directed DNS packets to that port
(V4). The flow entry had been installed at t = 2 (V5-V7)
because the switch had forwarded an earlier DNS packet to
the controller (V8), which had generated the rule based on
its configuration (V9).

Systems like ExXSPAN [21] and SNP [20] can construct
this type of positive provenance on demand; it is often a use-
ful debugging tool, just like the “backtraces” that many de-
buggers offer today.

2.3 Case study: Broken flow entry

We now return to the scenario in Figure 1. One possible rea-
son for this situation is that the administrator has configured
the controller to produce a generic, low-priority flow entry
for DNS traffic and a specific, high-priority flow entry for
HTTP traffic. If both entries are installed, the system works
as expected, but if the low-priority entry is installed first, it
matches HTTP packets as well; thus, these packets are not
forwarded to the controller and cannot trigger the installa-
tion of the high-priority entry. This subtle race condition
might manifest only at runtime, e.g., when both entries ex-
pire simultaneously during an occasional lull in traffic; thus,
it could be quite difficult to find.

Provenance would be useful in this situation because it
can track causality. A simple “diff” of the network state be-
fore and after the time HTTP traffic stopped arriving would
return both too much and too little: it would typically show
many causally unrelated changes that happened around the
same time, but it would probably not show the actual root
cause (if the problem resulted from a chain of events that
began much earlier). However, positive provenance is not
helpful here because, as long as requests are still arriving at
the HTTP server, their provenance contains only the high-
priority entry, and when the requests stop arriving, there is
no longer anything to generate the provenance of!

2.4 Negative provenance

Although positive provenance cannot explain negative events,
there is a way to construct a similar “backtrace” for such
events: instead of explaining how an actual event did occur,
we can simply find all the ways in which a missing event
could have occurred, and then show, as a “root cause”, the
reason why each of them did not come to pass.

At first glance, this approach seems infeasible: even in the
simple scenario in Figure 1, there are innumerable combina-
tions of flow entries and packet arrivals that could bring re-
quests to the web server. However, almost all of them will be
inconsistent with the SDN controller’s program, which can
only produce a few different flow entries, under very specific
conditions. This rules out most of the possible explanations.

Moreover, we can use a kind of counterfactual reasoning
to recursively generate the explanations, not unlike positive
provenance: for a web request to arrive at the web server,
a request would have had to appear at the rightmost switch
(S3), which did not happen. Such a request could only have
come from the switch in the middle (S2), and, eventually,
from the switch on the left (S1). But S1 would only have
sent the request if there had been 1) an actual request, 2)
a matching flow entry with a forward action to S2, and 3)
no matching higher-priority flow entry. Conditions 1) and
2) were satisfied, but condition 3) was not (because of the
DNS server’s flow entry). We can then ask where the higher-
priority flow entry came from, which can be answered with
positive provenance. We refer to such a counterfactual ex-
planation as negative provenance.

2.5 Challenges

The key challenge in working with negative provenance is
that its explanations can be far more complex than those
from positive provenance. There are two key reasons for
this: 1) Unlike positive provenance, which can be concep-
tually viewed as a subgraph of a finite graph that captures
the dependencies among all system states and state changes,
negative provenance does not have a well-defined model to
start with — there is an infinite set of negative events! 2)
Whenever an effect can occur in more than one possible
ways, positive provenance can simply report the specific cause,
whereas negative provenance must consider each possible
cause and show for each of them why it did not occur.

In addition, the overwhelming complexity of a naively-
presented negative provenance might limit its usability. Thus,
it is important to simplify the explanations whenever pos-
sible, e.g., by hiding branches that represent obvious logi-
cal contradictions. In Section 3.4, we describe some simple
heuristics that can help to accomplish this.

3. BASIC NEGATIVE PROVENANCE

In this section, we show how to derive a simple provenance
graph for NDlog programs that includes both positive and
negative events.

3.1 Background: Network Datalog

For ease of exposition, we will assume here that the con-
troller programs are written in network datalog (NDlog) [12]
because NDlog’s declarative syntax makes provenance par-
ticularly easy to see. (Our approach does not depend on
NDlog, however; we are currently working on a frontend
for Frenetic [5].) Below, we briefly review the features of
NDlog that are relevant here.

In NDlog, the state of a node (switch, controller, or server)
is modeled as a set of rables, which each contain a number
of tuples. For instance, an SDN switch might contain a table
called rule, and each tuple in this table might represent
a flow entry, or a SDN controller might have a table called
packet In that contains the packets it has received from the
switches. Tuples can be manually inserted, or they can be
programmatically derived from other tuples; the former are
called base tuples, and the latter are called derived tuples.

NDlog programs consist of rules that describe how tuples
should be derived from each other. For instance, the rule
A(@X,P) :-B(Q@X,Q),0=2+Psaysthatatuple A (@X,P)
should be derived on node X whenever there is also a
B (@X, Q) tuple on that node, and Q=2 +P. Here, P and Q
are variables that must be instantiated with values when the
rule is applied; for instance, a B (@X, 10) tuple would cre-
ate an A (@X, 5) tuple. The @ operator specifies the node
on which the tuple resides. Rules may include tuples from
different nodes; for instance, C (@X,P) : = C (@Y, P) says
that tuples in the C-table on node Y should be sent to node
X and inserted into the C-table there.

A key advantage of a declarative formulation is that causal-
ity is very easy to see: if a tuple A (@X,5) was derived
using the rule above, then A (@X, 5) exists simply because
B (@X, 10) exists, and because 1 0=2x*5.

3.2 Provenance graph

Provenance can be represented as a DAG in which the ver-
tices are events and the edges indicate direct causal relation-
ships. Thanks to NDlog’s simplicity, it is possible to define
a very simple provenance graph for it, with only seven types
of event vertices (based on [20]):

e EXIST([t1,t2], N, 7): Tuple T existed on node N from
time 1 to to;

e INSERT(t, N, T), DERIVE(t, N, 7): Base (derived) tu-
ple 7 was inserted (derived) on node [V at time ¢;

e APPEAR(t,N,T), DISAPPEAR(t,N,7): Tuple 7
appeared or disappeared on node IV at time ¢; and

e SEND(t, Ny — Na,T), RECEIVE(t, Ny < No,7): T
was sent (received) by node Ny to N at time ¢.

The edges between the vertices correspond to their intuitive
causal connections: tuples can appear on a node because
they a) were inserted as base tuples, b) were derived from
other tuples, or c) were received in a message from another
node (for cross-node rules). Messages are received because
they were sent, and tuples exist because they appeared. Note
that vertices are annotated with the node on which they oc-
cur, as well as with the relevant time; the latter will be im-
portant for negative provenance because we will often need
to reason about past events.

We can extend this model to support negative provenance,
by associating each vertex with a negative “twin”:

e NEXIST([t1,t2], N, 7): Tuple T never existed on node
N in time interval [t1, to];

e NINSERT([ty, t2], N, T), NDERIVE([t1, t2], N, 7): T was
never inserted (derived) on N in [ty, t5];

® NAPPEAR([t1,t2],N, 7), NDISAPPEAR([t1,t2],N, 7): Tu-

ple 7 never (dis)appeared on N in [tq, t5]; and
e NSEND([t1,t2], N, T), NRECEIVE([t1,t2], N, 7): T was
never sent (received) by node N in [t1, o).

Again, the causal connections are the intuitive ones: tuples
never existed because they never appeared, they never ap-
peared because they were never inserted, derived, or received,
etc. However, note that, unlike their positive counterparts,
all negative vertices are annotated with time intervals: un-
like positive provenance, which can refer to specific events
at specific times, negative provenance must explain the ab-
sence of events in certain intervals.

3.3 Graph construction

Given an event vertex, it is possible to mechanically con-
struct the provenance graph that explains it (using a log of
the program’s execution). We have developed an initial ver-
sion of such an algorithm, based on an extension of [20], but

we cannot present it in detail here due to lack of space. In-
stead, we briefly describe some of the interesting cases we
encountered.

Tuples that never existed: Positive provenance is usually
implemented by maintaining “backpointers” that link each
tuple to the tuples from which it was derived. This makes it
easy to explain the existence or appearance of a tuple. But to
explain why a tuple never appeared in a certain time interval,
we must potentially inspect the log for the entire interval,
which can be expensive. However, it should be possible to
avoid most of this overhead with a suitable index, which we
are currently developing.

Explaining non-derivation: When explaining why a rule
with multiple preconditions did not derive a certain tuple, we
must consider a potentially complex parameter space. For
instance, if A (@X, p) : -B(@X,p, q,r),C(QX,p,q) did
not derive A (@X, 10), we can explain this with the absence
of B(@X,10,q,r), C(@X,10,q), or a combination of
both — e.g., by dividing the possible ¢ values between the
two preconditions. Different choices can result in explana-
tions of dramatically different sizes once the preconditions
themselves have been explained; hence, we would like to
choose a partition of the parameter space (here,) x R) that
results in the smallest possible explanation. In general, find-
ing such a partition is at least as hard as the SETCovEer prob-
lem, which is NP-hard; however, we have found that simple
“greedy” heuristics seem to work quite well in practice. We
are currently refining these heuristics further.

Missing messages: A similar challenge exists when explain-
ing why a certain message m was not received. Theoretical-
ly, any node in the system could have sent m, so it may seem
as if we had to give a specific reason for each of them. But
in practice, most protocols restrict how communication can
occur; for instance, in routing protocols, messages can typi-
cally come only from direct neighbors. Moreover, it is often
the case that a given message can only come from a spe-
cific set of neighbors: for instance, a BGP message whose
AS path starts with 55 should come from a router in AS 55.
However, to avoid giving misleading answers, we must only
rule out a possible sender if the program clearly prohibits
it; we are currently investigating the use of static analysis to
infer such restrictions.

3.4 Pruning unhelpful branches

“Raw” negative provenance graphs constructed according to
Section 3.3 are correct and complete, but they are sometimes
cluttered with explanations that are technically correct but
not very helpful. We have identified two techniques that can
safely remove most of the clutter.

Early termination: Some explanations contain logical in-
consistencies: for instance, if the absence of a tuple 7; with
parameter space .S7; might be explained by the absence of
a tuple 7o with parameter space Sy C S, or if a deriva-
tion is only possible when a variable is out of range. If we
can recognize such inconsistencies early, there is no need to

s0: pktTemp (@S, H, Pr)
sl: drop (@S, H)
s2: packet (@D, H)
s3: ruleMatch (@S, H,Pr,a_-Count<x>)
s4: pktTemp (@S, H,Pr’")
s5: rule (Q@S,Pr,M,A,Pt)
s6: packetIn (Q@C,H,S)
s7: drop (@S,H) :— pktTemp(@S,H,Pr),Pr==-1.
cO: rule(@S,Pr,M,A,Pt)

:— packet (@S, H),highestPriority (@S, Pr) .
:— pktTemp(@S,H,Pr), rule(@S,Pr,M,A,Pt),H==M, A=="Drop’ .
:— pktTemp (@S, H,Pr),rule(@S,Pr,M,A,Pt),H==M, A=="Fwd’, 1ink (@S,D,Pt) .
:— pktTemp (@S, H,Pr),rule(@S,Pr,M,A,Pt),H==M.
:— ruleMatch(@S,H,Pr,C),C==0,Pr’ :=Pr-1,Pr>=0.
:— pktTemp (@S,H,Pr), rule(@S,Pr,M,A,Pt), H==M.
:— pktTemp(@S,H,Pr), rule(@s,Pr,M,A,Pt),HH==M, Pr==0, controller (@S,C).

:— packetIn(@C,H,S),missHandler (QC,H,Pr,M,A,Pt),ofswitch (QC,S) .

Figure 3: NDlog model of an SDN: When a packet arrives, it is matched against flow entries, starting with the highest-priority
entry (s0). If an entry matches, its action is applied (s1+s2), and the entry is refreshed (s5), otherwise lower-priority entries
are tried (s3+s4); the lowest-priority entry sends packets to the controller (s6). If no entry matches, the packet is dropped (s7).
When the controller receives a packet, it computes an entry and sends it to the switch (c0).

continue generating the provenance until a set of base tu-
ples is reached, since the precondition is clearly unsatisfi-
able. Thus, we can safely truncate the corresponding branch
of the provenance tree.

Avoiding redundancy: Sometimes the same fact is needed
at multiple points in the graph. To avoid redundancy, we
include the explanations of such facts only once.
Application-specific invariants: Some explanations may
be irrelevant for the particular SDN that is being debugged.
For instance, certain data — such as constants, topology in-
formation, or state from a configuration file — changes rarely
or never, so the absence of changes does not usually need to
be explained. If necessary, the programmer can briefly anno-
tate such state, so the system can omit further explanations
when this state has not changed.

On-demand exploration: If the graph is large, the human
investigator can initially be shown only part of it, perhaps
up to a certain “depth”. The investigator can then expand
additional vertices interactively, as needed.

3.5 Improving readability

Another way to make negative provenance graphs more use-
ful for the human investigator is to display the provenance at
different levels of detail. For instance, if a message fails to
appear at node /V; but could only have originated at node No
several hops away, the basic provenance tree would show,
for each node on the path from N; to Ny, that the message
was not sent from there, because it failed to appear there,
because it was not received from the next-hop node, etc. We
can improve readability by summarizing these (thematically
related) vertexes into a single super-vertex. If the human
investigator requests additional details, the fine-grained ver-
texes can still be shown.

So far, we have identified three situations where this sum-
marization can be applied. The first is a chain of transient
events that originates at one node and terminates at another,
as in the above example; we replace such chains by a single
super-vertex. The second is the (common) sequence
NEXIST([t1, t2], N, T) <= NAPPEAR([t1,¢2], N, T) < NDE-
RIVE([t1,t2], N, 7), which says that a tuple was never de-
rived; we replace this with an ABSENCE([t1, ta], NV, T) super-
vertex; its positive counterpart EXISTENCE([t1, to], N, 7) is

used to replace a positive sequence. The third situation is
a derivation that depends on a small set of triggers — e.g.,
flow entries can only be generated when a packet p is for-
warded to the controller C. In this case, the basic provenance
will contain a long series of NAPPEAR([t;, t;11], C, p) ver-
tices that explain the common case where the trigger packet
p does not exist; we replace these with a single super-vertex
ONLY-EXIST({t1, ta, . . .} € [tstart, tend], C, p) that initially fo-
cuses attention on the rare cases where the trigger does exist.
Again, the full explanation can still be shown on demand.

4. CASE STUDY

We have implemented an early prototype of a negative prove-
nance engine for SDNs, based on the algorithm and the heuris-
tics in Section 3. To illustrate the provenance results our en-
gine produces, we have set up the scenario from Figure 1
and Section 2.3 (our running example) in a simulator, using
an NDlog model of an OpenFlow switch, which is shown in
Figure 3 and explained briefly in the caption of that figure.
(Recall that we use NDlog only for ease of explanation; the
switch does not actually have to run NDlog.) The query we
have motivated earlier (why HTTP requests are no longer ap-
pearing at the web server) corresponds to a NAPPEAR([t1,t2],
D, packet(QD, HTTP)) in this model, where [t1, t2] is an in-
terval during which the administrator has not observed any
web requests.

Figure 4 shows the “raw” negative provenance, without
the heuristics from Sections 3.4 and 3.5. The details are not
shown, but the tree is clearly too large to be used directly by a
human investigator. However, many of the smaller branches
(shown in red) represent logical inconsistencies and can be
pruned, while many of the vertices in the main branch (shown
in gray) represent technicalities, such as event chains across
multiple nodes, which can be summarized.

Figure 5 shows the final negative provenance after apply-
ing our heuristics. This explanation is much more readable:
HTTP requests did not arrive at the HTTP server (V1) be-
cause there was no suitable flow entry at the switch (V2).
Such an entry could only have been installed if a HTTP
packet had arrived (V3) and caused a table miss, but the lat-
ter did not happen because there already was an entry (the
low-priority DNS entry, V4) that matched HTTP packets,

Labels in Summarized Tree

] Materialized Vertices

O Intermediate Vertices

S) Inconsistent/Repeated Vertices

Figure 4: Raw negative provenance tree for our example
query from Figure 1 (absence of HTTP requests).

and that entry had been installed in response to an earlier
DNS packet (V5). We believe that “backtraces” of this kind
would be useful in debugging complex problems in SDNs.
Note that our heuristics are not specific to this scenario,
so we can hope to achieve a comparable reduction in com-
plexity for other queries. We have confirmed this for several
other scenarios, but we omit the results for lack of space.

5. RELATED WORK

Network debugging: Many tools and techniques for net-
work debugging and root cause analysis have been proposed,
e.g., [4, 7, 13], but most focus on explaining positive events.
Hubble [10] uses probing to find AS-level reachability prob-
lems but is protocol-specific; header space analysis [11] pro-
vides finer-grain results but relies on static analysis and thus
cannot explain complex, dynamic interactions like the ones
we consider here. ATPG [19] tests for liveness, reacha-
bility, and performance, but cannot handle dynamic nodes
like the SDN controller. NICE [2] uses model checking to
test whether a given SDN program has specific correctness
properties; this approach is complementary to ours, which
focuses on investigating the cause of unforeseen problems
at runtime. We are not aware of any protocol-independent
systems that can explain negative events in a dynamic dis-
tributed system.

Negative provenance: There is a substantial literature on
tracking provenance in databases [1, 6, 9, 15, 18] and in
networks [20, 21], but only a few papers consider negative
provenance. Huang et al. [8] and Meliou et al. [14] fo-
cus on instance-based explanations for missing answers, that
is, how to obtain the missing answers by making modifica-
tions to the value of base instances (tuples). Why-Not [3]
and ConQueR [16] provides query-based explanations for
SQL queries, which reveal over-constrained conditions in
the queries and suggest modifications to them. None of these
papers consider distributed environments and networks, as
we do here.

V1
ABSENCE(t=[14s,17s], HTTP Server,
packet(@HTTP Server, HTTP))

Server didn’t get any HTTP request
<--since 14s because forwarding rule
was missing at an upstream switch.

V2
ABSENCE(t=[0s,17s], S1,
rule(@S1, PrioAny, HTTP, Forward, Port1))

The forwarding rule could only have been
inserted in response to a HTTP packet,
of which only one arrived, at 15s.

N

But that HTTP packet was handled by
AND |an existing drop rule at switch, thus not
/ sent to controller.

V3
NLY-EXIST(t={15s} in [0s,17s], S1, EXISTENCE(t=[15s], S1,
packet(@S1, HTTP)) rule(@$S1, PrioLow, non-DNS, Drop, -)

The drop rule was triggered by

a DNS packet at 9s.

EXISTENCE(t=[9s], S1,
packet(@S1, DNS))

Figure 5: Final provenance tree for our example query, after
the techniques from Section 3.4 and 3.5 have been applied.

6. SUMMARY AND CURRENT STATUS

In this paper, we have argued that negative provenance is a
promising approach to a particularly difficult class of diag-
nostic problems: the cases where an expected event fails to
occur and the human administrator is left with no starting
point for her investigation. Negative provenance enables the
administrator to ask “Why not?” queries and to obtain the
equivalent of a backtrace in response, much like those in a
traditional debugger.

At first glance, it may seem that negative provenance can-
not work: there seem just too many ways in which a missing
event could have occurred. However, we have provided ini-
tial evidence that, with careful program analysis and with ap-
propriate summarization and pruning, negative provenance
can produce surprisingly simple, high-quality explanations.
Thus, further work on a more complete system for negative
provenance seems warranted.

However, much is left to be done before we can reach
this goal. For instance, negative provenance requires a run-
time system for storing execution traces, similar to ExS-
PAN [21] or SNP [20]; front-ends for popular SDN program-
ming languages like Frenetic [5] should be added; suitable
index structures for fast query processing need to be devel-
oped; and the summarization and pruning heuristics need to
be further refined. We are pursuing these goals in our ongo-
ing work.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments and suggestions. We also thank Alexander J. T. Gur-
ney for helpful comments on an earlier draft of this paper.
This work was supported by NSF grants CNS-0845552, CNS-
1040672, CNS-1054229 and CNS-1065130. Any opinions,
findings, and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect
the views of the funding agencies.

7.
(1]

(2]

(3]

(4]

[5

—

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In Proceedings of the
8th International Conference on Database Theory (ICDT),
Jan. 2001.

M. Canini, D. Venzano, P. Peresini, D. Kosti¢, and

J. Rexford. A NICE way to test OpenFlow applications. In
Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation (NSDI), Apr. 2012.

A. Chapman and H. V. Jagadish. Why not? In Proceedings of
the 2009 ACM SIGMOD International Conference on
Management of Data (SIGMOD), June 2009.

A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and

B. Maggs. Locating Internet routing instabilities. In
Proceedings of the ACM SIGCOMM Conference, Aug. 2004.
N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,

J. Rexford, A. Story, and D. Walker. Frenetic: A network
programming language. In Proceedings of the 16th ACM
SIGPLAN international conference on Functional
programming (ICFP), Sept. 2011.

T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G.
Ives, and V. Tannen. ORCHESTRA: Facilitating
collaborative data sharing. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data
(SIGMOD), June 2007.

N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and

N. McKeown. Where is the debugger for my
software-defined network? In Proceedings of the Ist
Workshop on Hot Topics in Software Defined Networking
(HotSDN), Aug. 2012.

J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the
provenance of non-answers to queries over extracted data.
Proceedings of the VLDB Endowment, 1(1):736-747, Aug.
2008.

R. Ikeda, H. Park, and J. Widom. Provenance for generalized
map and reduce workflows. In Proceedings of the 5th
Biennial Conference on Innovative Data Systems Research
(CIDR), Jan. 2011.

E. Katz-Bassett, H. V. Madhyastha, J. P. John,

A. Krishnamurthy, D. Wetherall, and T. Anderson. Studying
black holes in the Internet with Hubble. In Proceedings of
the 5th USENIX Conference on Networked Systems Design
and Implementation (NSDI), Apr. 2008.

P. Kazemian, G. Varghese, and N. McKeown. Header space
analysis: Static checking for networks. In Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation (NSDI), Apr. 2012.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and

L. Stoica. Declarative networking. Communications of the
ACM, 52(11):87-95, Nov. 2009.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godftrey,
and S. T. King. Debugging the data plane with Anteater. In
Proceedings of the ACM SIGCOMM Conference, Aug. 2011.
A. Meliou and D. Suciu. Tiresias: The database oracle for
how-to queries. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data
(SIGMOD), May 2012.

C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query
evaluation on probabilistic data. In Proceedings of the 23rd
International Conference on Data Engineering (ICDE), Apr.
2007.

Q. T. Tran and C.-Y. Chan. How to ConQueR why-not
questions. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data
(SIGMOD), June 2010.

(171

(18]

[19]

[20]

[21]

M. Welsh. What I wish systems researchers would work on.
Blog post, http://matt-welsh.blogspot.com/
2013/05/what-i-wish-systems—researchers
-would.html, May 2013.

J. Widom. Trio: A system for integrated management of
data, accuracy, and lineage. In Proceedings of the 2nd
Biennial Conference on Innovative Data Systems Research
(CIDR), Jan. 2005.

H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic test packet generation. In Proceedings of the 8th
International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), Dec. 2012.

W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and
M. Sherr. Secure network provenance. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2011.

W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao.
Efficient querying and maintenance of network provenance
at Internet-scale. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data
(SIGMOD), June 2010.

http://matt-welsh.blogspot.com/
2013/05/what-i-wish-systems-researchers
-would.html

	Introduction
	Overview
	Scenario: Network debugging
	Positive provenance
	Case study: Broken flow entry
	Negative provenance
	Challenges

	Basic negative provenance
	Background: Network Datalog
	Provenance graph
	Graph construction
	Pruning unhelpful branches
	Improving readability

	Case study
	Related Work
	Summary and current status
	References

