
Towards a Data-centric View of Cloud Security

Wenchao Zhou[Micah Sherr\ William R. Marczak] Zhuoyao Zhang[

Tao Tao[Boon Thau Loo[Insup Lee[

[University of Pennsylvania \Georgetown University]University of California at Berkeley
{wenchaoz, zhuoyao, taot, boonloo, lee}@cis.upenn.edu

msherr@cs.georgetown.edu wrm@berkeley.edu

ABSTRACT
Cloud security issues have recently gained traction in the
research community, with much of the focus primarily con-
centrated on securing the operating systems and virtual ma-
chines on which the services are deployed. In this paper, we
take an alternative perspective and propose a data-centric
view of cloud security. In particular, we explore the secu-
rity properties of secure data sharing between applications
hosted in the cloud. We discuss data management chal-
lenges in the areas of secure distributed query processing,
system analysis and forensics, and query correctness assur-
ance, and describe our current efforts towards meeting these
challenges using our Declarative Secure Distributed Systems
(DS2) platform.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administra-
tion—Security, Integrity, and Protection; C.2.4 [Computer
Systems Organization]: Computer Communication Net-
works—Distributed Systems; H.2.4 [Database Manage-
ment]: Systems—Query Processing

General Terms
Design, Management, Security

Keywords
Cloud security, Secure data processing, System analysis and
forensics, Declarative networking

1. INTRODUCTION
The economics of outsourcing data and computation will

likely spur a continued migration of applications to the cloud.
Just as the Internet is becoming dominated by applications
that require data integration and sharing, we similarly ex-
pect that applications within the cloud will become increas-
ingly interdependent. The trend toward interoperable cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CloudDB 2010, October 30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0380-4/10/10 ...$10.00.

applications will require solutions that enable the secure
communication and exchange of information between the
cloud’s users. In this paper, cloud users refer to content
providers or portals that have deployed their applications
and/or services on the cloud in order to serve a larger group
of end-host clients.

A framework for secure data sharing in the cloud permits
more diverse and feature-rich cloud applications, including
(but not limited to): (i) retail portals that exchange product,
inventory, and order information with smaller merchants
in the cloud; (ii) scientific computations that can be par-
titioned into parallel jobs and processed by cloud customers
with spare computational resources; (iii) privacy-protecting
social network services that allow clients to have more con-
trol over how their data are published, stored, and shared;
and (iv) enterprise cloud customers who conduct business
online by selling and purchasing online services.

While cloud security has recently gained traction in the re-
search community, much of this effort has focused on secur-
ing the underlying operating systems and virtual machines
that host cloud services [8, 22, 34, 36, 37, 41]. This paper ar-
gues that a comprehensive solution has to go beyond OS and
VM-centric security solutions and, in particular, must pro-
vide mechanisms for securely sharing, verifying, and tracing
data as they flow between cloud users. Although most cloud
providers enforce node access control (i.e., computation and
data are distributed only to centrally managed and presum-
ably secure cloud nodes), the integration and exchange of
data between potentially dishonest cloud users presents sev-
eral unique security challenges.

This paper introduces an extensible data-driven frame-
work called DS2 [1] that provides secure data processing
and sharing between cloud users. DS2 is designed for col-
laborative deployments in which (potentially untrustworthy)
cloud users share and exchange data. Our data-driven ap-
proach enables us to build upon well-studied database tech-
niques, including database access control [38], query results
verification of outsourced databases [14, 31, 33, 35], dis-
tributed query engines for enforcing extensible trust man-
agement policies [28, 29, 42] in the cloud ecosystem, and
declarative techniques for cloud analytics [4].

This paper makes the following contributions. We first
enumerate the data management challenges that face multi-
user cloud environments. To meet these challenges, we pro-
pose the DS2 platform, which provides:

• secure query processing in a multi-user cloud environment;

• seamless integration of declarative access control policies
with data processing to enable secure sharing among users;

• system analysis and forensics by capturing accurate his-
torical records of data exchanges in the form of distributed
provenance; and

• efficient end-to-end verification of data that are parti-
tioned across both cloud nodes and cloud users

The remainder of the paper is organized as follows. We
begin by motivating the need for a secure data exchange
framework via a number of examples (Section 2), and then
discuss some of the high-level challenges (Section 3) fac-
ing secure cloud data management. Next, we present an
overview of the DS2 platform (Section 4) and describe how
it helps meet many of the identified challenges (Sections 5
through 8). Finally, we conclude with a discussion of our
ongoing and future work (Section 9).

2. MOTIVATING EXAMPLES
Due to their scalability, high quality of service, cost effec-

tiveness, and reliability, clouds present an attractive plat-
form for a variety of applications. Although most existing
cloud application deployments consist of homogeneous and
isolated software, interconnecting such applications to share
data among cloud users enables more adaptable systems.
Although the following list is not intended to be compre-
hensive, we briefly posit some potential applications that
may benefit from inter-application information exchange.

Online Marketplaces. Retail portals such as Yahoo!,
Amazon, buy.com, eBay, etc. serve as storefronts for mer-
chants. These online marketplaces collect product and in-
ventory information from sellers, and provide potential buy-
ers with a unified store in which they may search for and
purchase goods and services.

The economics of cloud computing allow both portal oper-
ators and merchants to benefit by moving their applications
into the cloud. However, although cloud platforms offer ser-
vices for exchanging data between virtual nodes belonging
to the same cloud user, there is little existing support for
secure query execution between different cloud users. DS2
provides a unified data integration language for portal opera-
tors and merchants to exchange data – for instance, to query
available inventory, gather product descriptions and prices,
process orders, and track shipments. DS2 supplies an au-
thentication layer for communicated queries and result sets
which could, for example: (i) prevent competing merchants
from querying each others’ inventories and prices, and (ii)
allow portal operators to communicate payment information
with only authorized parties. Additionally, portal operators
can use DS2 as an access control framework to both restrict
certain portal features to trusted merchants and offer differ-
entiated pricing models in which merchants can pay more to
further distinguish their products in the store.

Social Network Service in the Cloud. Social network
services allow users to interact through an online social net-
work topology. Most existing social network services (in-
cluding Facebook, LinkedIn, renren, and Cyworld) rely on
centralized architectures with end-host clients’ public and
private information stored in the service provider’s databases.
Complex and frequently changing privacy policies and prac-
tices have sometimes frustrated customers [6, 44], motivat-
ing the development of less centralized and more
user-controllable social network services [5, 12, 13].

One promising approach to construct a more
privacy-preserving social network service is to carefully store
personal data in the cloud. Social networking customers
could either host their own information on cloud nodes (such
a model is compatible with ongoing efforts such as Dias-
pora* [12] and Appleseed [5]), or distribute portions of their
data across federated cloud profile hosting services.

DS2 supports such cloud-based social network services by
providing secure mechanisms for query execution and data
computation. For example, traversing the social graph to
discover potential connections (or in the parlance of Face-
book, mining for friend “suggestions”) is a distributed com-
putation when profile data are disseminated throughout the
cloud. DS2 assists such computations by ensuring that data
are authenticated and that access controls are properly en-
forced. We demonstrate in Section 5 how DS2 can be used
to program a secure version of MapReduce [10] that veri-
fies the authenticity of data received from spawned workers;
such an authenticated MapReduce service can be used in
the context of social network services to efficiently locate
potential connections.

Outsourced Data Storage and Query. A salient feature
of cloud services is their ability to amortize the cost of stor-
ing large datasets. Cloud-based data storage providers may
sell storage solutions that extend the features offered by the
underlying cloud. For example, data storage providers may
strategically locate data in the cloud to optimize content de-
livery, sell backup solutions, or offer data mining and query
services.

Data owners may opt to disseminate their data across mul-
tiple such in-cloud storage providers to improve reliability
(i.e., availability) or to take advantage of different features
and pricing options. DS2 provides end-to-end verifiability of
partitioned data, allowing end-clients to detect unauthorized
data alteration, insertion, or deletion.

3. CHALLENGES
Based on the above examples, we identify three security

challenges associated with cloud data management:

Challenge 1: Secure Query Processing and Data
Sharing. In a centrally administered and tightly controlled
enterprise environment, queries may be safely executed in
the trusted corporate network. However, in distributed and
decentralized environments such as the cloud, all parties may
not behave honestly.

A key challenge of deploying data-centric applications in
the multi-user cloud setting is to ensure that all querying
processing and data sharing are carried out securely – par-
ticipating parties should be authenticated and authorized,
and user-specified access control policies should be strictly
enforced.

Furthermore, the access control language should be suffi-
ciently flexible to meet the needs of a large range of appli-
cations. For example, policies may accept or reject access
based on authentication tokens, or access decisions may be
based on derivation histories of communicated tuples. Al-
though domain-specific solutions have been previously pro-
posed, we argue that a general-purpose secure framework
better enables developers to deploy their applications in di-
verse cloud environments.

Challenge 2: System Analysis and Forensics. Data
exchanges and interaction among multiple cloud applica-
tions complicate the dependency logic of derived tuples. A
misbehaving (and potentially malicious) user’s input may
have profound and intricate implications on other users’ ap-
plications. Non-deterministic message transmission (e.g.,
message re-ordering or loss) and the dynamic nature of the
cloud further complicate the problem. All of these issues
underscore the necessity of an effective approach to system-
atically perform system analysis and forensics.

Challenge 3: Query Correctness Assurance. Cloud
computing represents a cost-effective means of outsourcing
computation. However, näıvely relying on (potentially un-
trustworthy) cloud applications to accurately process queries
imposes a significant security risk. We desire techniques that
provide end-to-end verification of query results.

Given the above challenges, we now describe our data-
centric architecture for multi-user cloud security.

4. DS2 PLATFORM
We first describe the DS2 platform that provides the func-

tionality required by our proposed data security techniques.
In DS2, network protocol and security policies are specified
using Secure Network Datalog (SeNDlog) [42], a declarative
language primarily rooted in Datalog that unifies declara-
tive networking [27, 26] and logic-based access control [3]
specifications. In prior work [42], we have demonstrated the
flexibility and compactness of the SeNDlog language via se-
cure specifications of Internet routing protocols, the Chord
distributed hash table [40], the PIER [20] distributed query
processor, and the A3 extensible anonymity system [39].

SeNDlog programs are disseminated and compiled at each
node into individual execution plans. When executed, these
execution plans both implement the specified distributed
protocol as well as enforce its desired security policies. By
using declarative techniques, SeNDlog requires orders of mag-
nitude less code than imperative languages [27].

SeNDlog extends the basic declarative networking lan-
guage by adding support for authenticated communication.
SeNDlog integrates two commonly used constructs in dis-
tributed trust management languages (e.g. Binder [11]): (i)
the notion of context to represent a principal in a distributed
environment and (ii) a distinguished operator says that ab-
stracts away the details of authentication [11, 24].

To demonstrate the key language features of SeNDlog, we
present a simple distributed program that computes pair-
wise reachability:

At S:
r1 reachable(S,D) :- link(S,D).
r2 reachable(D,Z)@D :- link(S,D), W says reachable(S,Z).

The program consists of two rules (r1 and r2) that are ex-
ecuted in the context of node S. The program computes the
set of reachable nodes (reachable) given the set of network
links (links) between S and D.

Rule r1 takes link(S,D) tuples, and computes single-hop
reachability reachable(S,D). Rule r2 recursively computes
multi-hop reachability, based on derived reachability facts
asserted by node W. The says primitive in rule r2 specifies
that the authenticity of the received reachable tuple should
be checked, ensuring that it originated from W. Finally, the

location specifier @D in rule r2 indicates that the evaluation
result should be communicated to node D.

We highlight two language features of SeNDlog of rele-
vance to cloud security, with additional details in [42]:

Communication Context. Due to the distributed nature
of network queries, a principal does not have control over
rule execution at other nodes. As described in more detail
in Section 5, SeNDlog achieves secure distributed query pro-
cessing by allowing programs to interoperate correctly and
securely via the export and import of rules and derived tu-
ples across contexts.

In the above example, the rules are in the context of S,
where S is a variable assigned upon rule installation. In the
multi-user cloud environment, S represents a cloud user or
group of cloud users.

Import and Export Predicates. The SeNDlog language
allows different contexts to communicate by importing and
exporting tuples. The communication serves two purposes:
(i) to disseminate maintenance messages, and (ii) to dis-
tribute the derivation of security decisions.

During the evaluation of SeNDlog rules, derived tuples
can be communicated among contexts via the use of import
predicates and export predicates. An import predicate is of
the form “N says p”, indicating that principal N asserts the
predicate p.

The use of export predicates provides confidentiality by
exporting tuples only to specified principals. An export
predicate is of the form “N says p@X”, where principal N ex-
ports the predicate p to principal X. In rule r2, node S ex-
ports reachable tuples to node D (as a shorthand, “S says”
is omitted as S is where the rule resides).

The says operator implements an authentication
scheme [24] that allows the receiver of the tuple to verify
its source. The implementation of says depends on the sys-
tem and its context. For example, says may require digital
signatures. In a different cloud environment in which all ap-
plications are trusted, says may simply append a cleartext
principal header to a message. Alternatively, cryptographic
signatures may be applied only to certain important mes-
sages or when communicating with specific principals. DS2
provides sufficient flexibility to support a variety of crypto-
graphic authentication primitives.

In addition to authentication, DS2 also provides mecha-
nisms that optionally encrypt transmitted messages to pro-
tect the confidentiality of communication.

5. SECURE QUERY PROCESSING
DS2 aims to enable developers to specify cloud computa-

tions, data integration, and trust policies using a common
declarative framework. Using SeNDlog as its basis, DS2 al-
lows cloud users to both seamlessly integrate their services
without exposing their confidential information as well as
verify the authenticity of received data. To highlight these
possibilities, we show an example based on an authenticated
implementation of MapReduce written and implemented us-
ing SeNDlog.

5.1 Example: Authenticated MapReduce
MapReduce has been used extensively in cloud applica-

tions for efficiently utilizing parallel resources to solve cer-
tain classes of distributed problems. Generally, a MapRe-

duce job consists of two steps: map and reduce. At the map
step, a master node splits the job into small sub-problems
and distributes them to map workers. The results produced
by the map workers are then collected at the reduce step,
and are combined into a solution to the original problem.

In an untrusted environment, the map and reduce work-
ers may be executed on untrusted nodes. In order to ensure
correct execution of a MapReduce program, the nodes par-
ticipating in the computation need to be authenticated. As
an example, we consider the WordCount program in which
MapReduce is used to count the occurrences of words in
webpages. The following rules (m1-m2 for map steps and
r1-r2 for reduce steps) demonstrate an authenticated imple-
mentation of MapReduce written in SeNDlog and executed
via DS2:
At MW:
m1 map(ID,Content) :- file(MW,ID,Content).
m2 emits(MW,Word,Num,Offset)@RW :-

word(Word,Num,Offset),
reduceWorker(RID,RW), RID=f_SHA1(Word).

At RW:
r1 reduceTuple(Word,a_LIST<Num>) :-

MW says emits(MW,Word,Num,Offset).
r2 reduce(Word,List) :- reduceTuple(Word,List),

Master says rBegin(RW).

In the program shown above, rules m1 and m2 are within
the context of a map worker MW, and rules r1 and r2 are in
the context of a reduce worker RW.

Map Operation. Rule m1 takes as input a file predicate
and passes the ID and the Content of the file to the instances
of the user-defined Map functions.

Upon receiving an (ID, Content) pair, each Map instance
splits the content of the document into separate words, and
generates a (word,1) pair (stored in word tuples) for each
word, denoting that the occurrence count of the word should
be increased by one. The word tuples, tagged with the Offset

of each word in the document, are then sent back to MW as
the result of the map function.

Rule m2 takes as input word tuples and distributes them (in
the form of emits tuples) to reduce workers. To enable au-
thentication, a signature is included within each emits tuple
using the says primitive.

Reduce Operation. Reduce workers receive and authen-
ticate (e.g., via digital signatures) emits tuples from map
workers. The tuples are then grouped by the key field Word

(in rule r1). The a_LIST aggregate operator maintains the
occurrences of each word in a list structure.

After the map workers complete their job, a master node
sends a rBegin tuple to each reduce worker, signaling the
start of the reduce job. reduce tuples are sent to the user-
defined Reduce instances, each of which contains a word and
the list of its occurrences. Based on these lists, the Reduce

instances generate and emit the final results – the total oc-
currence counts of words.

Authentication. The above program enforces authentica-
tion using group signatures: reduce workers process an emits

tuple as long as it is signed by any legitimate map worker.
Alternatively, authentication can occur at finer granular-
ity. For instance, a reduce worker may be configured to
only accept tuples from cloud user merchant123 by changing
the clause “MW says emits” in rule r1 to “merchant123 says

emits”.

300

400

500

600

700

e
Ba

nd
w
id
th
 (K

Bp
s) NoAuth

RSA‐1024

HMAC

0

100

200

300

400

500

600

700

0 80 160 240 320 400 480 560 640

Pe
r‐
N
od

e
Ba

nd
w
id
th
 (K

Bp
s)

Time Elapsed (s)

NoAuth

RSA‐1024

HMAC

Figure 1: Per-node bandwidth (KBps) utilization

5.2 Preliminary Evaluation
We developed a prototype of WordCount using the Rapid-

Net [32] declarative networking system. Our preliminary
evaluation is intended (i) to experimentally validate DS2’s
ability to implement secure cloud applications using the
MapReduce paradigm, and (ii) to study the overhead in-
curred by adding authentication features to MapReduce. As
a workload, we use a two-phase version of our WordCount pro-
gram. In the Filtering Phase, the master node distributes
6,400 randomly selected webpages from the Stanford Web-
Base project [2] to map workers. Map workers filter out all
HTML tags and partition the results to reduce workers. Re-
duce workers then distribute the webpage fragments to the
map workers of the Counting Phase. The Counting Phase
uses the techniques described above to determine the occur-
rence counts of words in the webpages.

We perform the experiments within a local cluster of 16
quad-core machines. We deploy 16 map workers and 16 re-
duce workers for the Filtering Phase and 32 map workers
and 128 reduce workers for the Counting Phase. Each phys-
ical machine runs a total of 12 MapReduce worker instances.
To avoid packet-drops due to congestion, we rate-limit the
number of packets sent per second.

To evaluate the overhead incurred by performing authenti-
cations, we constructed three versions of WordCount: NoAuth,
RSA-1024 and HMAC. In NoAuth, MapReduce workers
transmit tuples without the sender’s signature; in RSA-1024
and HMAC, the communication between different map and
reduce workers are authenticated using 1024-bit RSA signa-
tures and SHA-1 HMACs, respectively.

Figure 1 shows the per-node bandwidth usage over time.
All three versions of WordCount incur spikes in their band-
width utilization in the first 30 seconds. The spikes are
mainly attributed to the cross-node communication during
the Filtering Phase. The MapReduce operation at this stage
is computationally inexpensive but network intensive, as the
tuples transmitted in this phase consist of relatively large
chunks of documents (as compared to word tuples transmit-
ted in the Counting Phase).

We observe that NoAuth finishes the computation in 350
seconds, whereas HMAC and RSA-1024 incur an additional
17.4% (60s) and 78.3% (270s) overhead in query completion
latency, respectively. The increase in query completion time
is due primarily to the computation incurred by signature
generation and verification. The respective aggregated com-
munication overheads of HMAC and RSA-1024 are 18.4%

(7.5MB) and 53.3% (21.8MB) higher than NoAuth. How-
ever, due to the use of network throttles in our evaluation,
the per-node bandwidth utilization for the three versions are
similar.

Note that while our example focuses on authentication,
prior work [42, 28] demonstrate that the says construct
is itself customizable, not only via different authentication
schemes, but also encryption schemes for confidentiality and
anonymity. This suggests that one can further extend our
example here to implement MapReduce customized with
other secure communication properties. We plan to explore
this as part of our future work.

6. ACCESS CONTROL
Data sharing and integration are integral to many applica-

tions that operate in a multi-user cloud environment. The
enforcement of access control policies can become compli-
cated by the fact that users may frequently enter or leave
the cloud, requiring policies to be rapidly updated. Real-
world trust policies are complex and may require function-
ality beyond that offered by traditional tuple-level access
control policies. Devising a scheme to respond to the dy-
namics and complexity of cloud environments represents a
significant challenge.

In this section, we demonstrate how DS2 supports com-
plex and dynamic data access control policies through query
rewriting and other techniques. Our approach builds upon
traditional database- and logic-based mechanisms for rea-
soning about trust policies.

6.1 View-based Access Control
Traditional databases typically utilize view-based access

control in which views are expressed in SQL, with access con-
trols to these views enforced via explicit permissions granted
to authorized users. Such views are easily expressible in
DS2. For example, if a user alice owns an employees pred-
icate that stores the names, departments, and salaries of
employees, then she may create a security view for some
other user, Bob:

At alice:
sv1 employee_sv_bob(Name,Dept) :-

employee(Name,Dept,Salary), Salary < 5000.
sv2 predsecview("employee","employee_sv_bob",bob).

In this example, alice allows bob to view only those em-
ployees in any department who have salaries less than $5000.
The employee_sv_bob predicate represents both a horizontal
(salary<5000) and vertical (salary column omitted) parti-
tion of the employee predicate. Note that employee_sv_bob

(defined by rule sv1) is dynamically applied as the predi-
cates in the rule body update, and hence its contents change
with the contents of the employee predicate. Rule sv2 main-
tains an additional predicate, predsecview, that associates
security views with the protected predicate.

DS2 can easily express security views that apply to entities
other than single users. For example, alice may delegate
access to the users whom a certificate authority believes are
good by replacing rule sv2 with the following rule:

sv2: predsecview("employee","employee_sv_good",U) :-
cert_authority says good(U).

In addition to supporting simple horizontal and vertical
slicing, DS2 permits more complex partitioning of access

control. For example, access rights may be based on prove-
nance information (e.g., Alice allows Bob to view only those
employee tuples derived using data from Bob). In general,
SeNDlog’s flexibility enables DS2 to support a wide variety
of access control policies.

Enforcement. We have thus far left unspecified how secu-
rity views are enforced. Standard Datalog cannot prevent
users from submitting a query that references predicates
directly, nor can unmodified Datalog dynamically rewrite
queries to refer to the security views. To enable these capa-
bilities, we extend Datalog to represent the currently execut-
ing queries in tables accessible to the program – a concept
we call the DS2 meta-model. Our approach is similar to
recently proposed Datalog-based meta-compilers [9, 28].

Preventing queries from directly reading predicates (e.g.,
employee) is made possible by adding schema constraints
called meta-constraints [29, 28] to the meta-model. Meta-
constraints restrict the set of allowable queries. DS2 uses
meta-constraints to express that users can only insert queries
that refer to security views:

says(U,R), body(R,A), functor(A,P) -> predsecview(_,P,U).

The above example introduces the schema constraint for-
mat. Note that instead of :-, the head and body are sep-
arated by a right-arrow (->). The logical meaning of this
format is that if, for any assignment of the variables, the
left hand side (LHS) is true, then the right hand side (RHS)
must also be true. If, on the other hand, the LHS is true
but the RHS is false, then evaluation of the query terminates
with an error.

In the above constraint, says associates a user U with a
query R, and body and functor are meta-model predicates
that examine the structure of the rule. The constraint ex-
presses that every predicate mentioned in the body must be
the security view of some other predicate (since the variable
for this other predicate is unimportant in the constraint, we
represent it with an underscore).

Code Generation. Unfortunately, constructing queries
that abide by meta-constraints requires careful diligence by
the programmer. To ease this burden, DS2 uses code gen-
eration to automatically rewrite queries to refer to security
views.

-rulebody(R,B), +rulebody(R,C), +atom(C),
+atompred(C,S), +atomargs(C,N,V) :-
P says R, rulebody(R,B), atompred(B,P),
predsecurityview(P,S), predargs(S,N,V).

For example, the above meta-rule updates the body of
queries by retracting (-) the body atom representing the orig-
inal predicate and asserting (+) the body atom representing
the security view. (The logical meaning of a conjunction of
atoms in the head of a rule q1,q2,...,qm :- p1,p2,...,pn is
the set of m rules: qi :- p1,p2,...,pn.)

Meta-rules provide programmers with a flexible access
control framework. Developers may specify meta-rules to
cause DS2 to transparently transform queries to adhere to
various security policies, without requiring any changes to
the program’s data or control logics. In addition to access
control, we have previously demonstrated [28] that meta-
programming capabilities are also useful for customizing var-
ious forms of security mechanisms for authentication, en-
cryption, and even anonymity.

6.2 Multi-user Multi-stage MapReduce
In Section 5, we introduced an authenticated version of

MapReduce. Given that both access control policies and
the MapReduce program are specified within SeNDlog, it is
easy to integrate access control policies as additional rules
in the program. The programmer needs only to supply a
set of policy rules. DS2 automatically performs the query
rewrites to generate the appropriate rules for executing the
MapReduce program.

In practice, given that MapReduce operations can span
multiple stages (i.e., compose several MapReduce opera-
tions), access control can be enforced across stages. For
instance, if alice starts a MapReduce operation and the re-
sulting output is used by bob for his subsequent MapReduce
operation, one needs to ensure that bob accesses only data
that he is authorized to view. One näıve solution is to en-
force access control only at the boundaries of each MapRe-
duce operation – i.e., on the resulting output between jobs.
A more sophisticated solution that we are currently explor-
ing is to “push-down” selection predicates dynamically into
each MapReduce execution plan. This ensures that proper
filtering is applied early so that only authorized data flows
downstream to later stages of the MapReduce operations.
In this example, the trust relationships between alice and
bob may result in filtering of input data as early as alice’s
MapReduce operation, causing only the data that bob is au-
thorized to view to be processed. We are currently inves-
tigating methods to adapt the dynamic rewrite capabilities
presented in [29] to handle more complex sharing, particu-
larly across users and multiple stages of MapReduce com-
putations.

7. DISTRIBUTED PROVENANCE
In an integrated cloud environment where multiple appli-

cations share information, it is useful to track the source of
communicated and derived data. For example, if a cloud
user merchant123 is trusted at time t but later discovered
to be deceitful at time t′ (t′ > t), it is critical that mer-

chant123’s effects on other users’ application states be de-
termined and potentially rolled back. DS2 addresses this
need by providing a mechanism for identifying where a tu-
ple originated, which nodes it traversed, how it was derived,
and which parties were involved in its derivation.

The database literature typically refers to such deriva-
tion information as provenance [7]. DS2’s declarative rule-
based derivation framework captures information flow as
distributed queries, enabling natural support for acquiring,
maintaining, and querying provenance in the cloud.

7.1 Usage of Provenance in the Cloud
The ability to identify the source of derived data enables

several important functionalities in the cloud. The follow-
ing list highlights some capabilities relevant to our multi-
application cloud setting:

Diagnosis and Forensics. Provenance information is use-
ful for debugging and error detection in the cloud. For exam-
ple, tracing backwards in a network-level provenance graph
may yield the discovery of the (possibly malicious) causes of
suspicious query results. Provenance is also useful for root
cause analysis (e.g., pinpointing the bottleneck in a multi-
staged MapReduce execution to a slow machine or malicious
user). In all scenarios, the querying of provenance can be

automatically triggered by an anomalous behavior (e.g., a
spike in traffic) that is detectable using a continuous query
over existing network state.

Mitigation. Once incorrect or untrusted data have been
identified, provenance enables developers to efficiently prop-
agate corrections by targeting only the affected applications,
reducing the number of expensive updates and rollbacks [25].

Provenance-based Trust Management. Provenance has
been used in the context of p2p data integration systems
as a basis to accept or reject access [21, 17]. Similarly,
cloud application developers can specify access control poli-
cies that process or discard an incoming tuple based on its
derivation. For instance, in a multi-staged MapReduce ex-
ecution, a map worker may make the decision based on its
trust relationship with the tuple’s original producer. Prove-
nance also allows the adoption of a quantitative approach for
trust management: a derived tuple is assigned a trust value
evaluated from its provenance, based on which a decision
is made. Interestingly, the quantitative approach is com-
putable and customizable by representing provenance in an
algebraic form [16].

7.2 Computing Distributed Provenance
In general, provenance can be modeled as a directed graph

that encodes the dependency relationships between base and
derived tuples. The provenance graph consists of vertices
that represent base tuples or intermediate evaluation re-
sults, and edges indicate the information workflow [15, 43].
This graph structure can be stored as relational tables in a
straightforward manner.

In the context of the cloud, data are distributed across
nodes and applications, and hence the provenance informa-
tion is itself distributed. We have previously explored the de-
sign space of distributed provenance in declarative networks,
and demonstrated that incrementally updateable and band-
width efficient implementations of distributed provenance
are achievable at Internet-scale [43].

In a nutshell, given a declarative networking protocol, by
using an automatic rewrite process, one can compute and
maintain distributed provenance as distributed views over
computed network state, thus allowing provenance mainte-
nance to be automatically handled by the incremental view
maintenance mechanism1 provided in DS2.

To query provenance, a distributed recursive query is is-
sued over the distributed view, and this results in a traversal
of the provenance graph. To customize each query, each user
can supply additional annotation schemes schemes [16, 23]
in the form of user-defined functions. This allows the query
results to be returned in a desired format (e.g., contribut-
ing base tuples, traversed cloud peers, and confidentiality
levels), to match to the requirement of various applications.
See [43] for more details.

Maintaining and querying distributed provenance in a
cloud setting raises open research challenges that we intend
to explore. First, our previous work focused primarily on en-
abling distributed provenance support at the network layer.
Since fault analysis is typically a cross-cutting concern, en-

1In our DS2 system, incremental view maintenance is lever-
aged by Pipelined Semi-näıve (PSN) evaluation, which is es-
sentially an asynchronous version of classic semi-näıve eval-
uation used for Datalog programs.

1 765432 8

1-2 5-63-4 7-8

1-4 5-8

1-8

Figure 2: MHT for table X

1 432

1-2 3-4

1-4 5-8

1-8

Figure 3: P-MHT for table X1

abling useful provenance information in the cloud may re-
quire integrating system state across various layers of the
cloud computing stack (application, middleware, network,
OS, etc.), several of which may run in legacy code outside
of DS2.

Second, since malicious nodes may intentionally manip-
ulate provenance information, the integrity of provenance
data must be protected. Fortunately, existing cryptographic
approaches [19] that ensure that unauthorized modification
of provenance data will be eventually detected are applica-
ble here. Provenance data should also remain confidential
and not be revealed to unauthorized parties. Cryptogra-
phy can be used to hide provenance information based on
roles, security levels, or other customized requirements. A
more challenging security problem is detecting when mali-
cious nodes purposefully withhold provenance information.
We are currently exploring the use of fault-detection [18]
techniques to address this particular threat.

8. END-TO-END QUERY VERIFICATION
Our final research direction explores verification mecha-

nisms that ensure that the results of distributed queries
can be verified. Here, we adapt a threat model in which
the owner of the data is trustworthy, but some fraction of
the cloud applications that host the data (and respond to
queries) is malicious.

Our initial approach adopts techniques used in verifying
the correctness of outsourced databases [14, 31, 35]. At a high
level, end-to-end verification works by requiring cloud ap-
plications to transmit verification objects (VOs) along with
query results. These VOs are then assessed by end-host
clients to verify the correctness of the tuples in the returned
result sets.

For example, previous work [35] has applied Merkle Trees
(MHTs) [30] to verify the results of range queries processed
by online servers. MHTs are constructed over presorted
data, with leaves corresponding to the hashes of database
tuples in a table and non-leaf nodes corresponding to the
hash of the concatenation of the children. The MHT is built
recursively to the root of the tree. The VO that is attached
to the result of a range query consists of (i) a signature over
the MHT’s root node, signed by the table’s owner; (ii) the
tuple with the greatest value that is lower than the minimum
specified in the query range (if such a tuple exists); (iii) the
tuple with the least value that is greater than the maximum
specified in the query range (if such a tuple exists); and (iv)
the smallest set of internal nodes (excluding the root) that
is required for the client to independently compute the root
of the MHT (additional details are provided in [35]). The

VO contains sufficient information to guarantee that no data
have been omitted or inserted to/from the query results, and
that no entry in the returned result sets has been modified.

To illustrate, consider table X = {x1, x2, x3, ..., x8}. The
MHT of X is shown in Figure 2, where hi is the digest
of tuple xi. The VO for a query that returns {x1, x2} is
{x3, h4, h5−8, SIG(h1−8)}, where SIG(h1−8) denotes a copy
of the root node that has been signed by the table’s owner.
When combined with {x1, x2}, the VO is sufficient for the
client to compute the root of the MHT and verify the signa-
ture. Note that the VO authenticates the resultset since a
modified, inserted, or omitted tuple will cause the computed
root’s digest to differ from that of the signed copy.

MHTs in the Cloud. We propose an adaptation of the
above MHT-based verification scheme for multi-user cloud
environments. Our approach, which we call partitioned MHT
(P-MHT), operates over partitioned data. P-MHTs enable
clients to verify the correctness of range queries executed
across multiple cloud applications.

When data are distributed across different cloud appli-
cations, tables may be horizontally partitioned such that
each application maintains a range of tuples in a sorted
table. Suppose table X (see Figure 2) is partitioned into
three sub-tables — X1 = {x1, x2, x3}, X2 = {x4, x5, x6},
and X3 = {x7, x8} — each of which is hosted by a separate
(and potentially malicious) cloud application. In addition
to storing the tuples, each application maintains a P-MHT
that embeds sufficient information for the local generation
of the VO for any tuple in the sub-table. That is, a P-MHT
is an MHT over a partition of data.

Figure 3 shows the P-MHT for X1. Although the P-MHT
is a partial MHT, it may still generate the VO for any tu-
ple maintained in X1. For example, the P-MHT maintains
sufficient information to generate the VO for the query that
returns {x1, x2} (i.e. the VO is {x3, h4, h5−8, SIG(h1−8)}),
thus allowing a client to verify the query result, provided
that he has obtained SIG(h1−8) from the (trusted) data
owner.

Our approach works for tables that are ordered and range
partitioned across nodes. Verifying query results across hash-
based partitions is an area of future work.

9. CONCLUSION AND FUTURE WORK
This paper outlines the challenges of secure cloud data

management and proposes several security mechanisms based
on the DS2 framework that move us closer toward meeting
these challenges. As a basis for further exploration, we have
implemented an initial DS2 prototype, developed using the

RapidNet declarative networking engine [32]. The SeNDlog
language/compiler and distributed provenance implementa-
tion is available for download at http://netdb.cis.upenn.
edu/rapidnet/downloads.html.

Our future work is proceeding in several directions. First,
we are exploring use-cases of DS2 for securing a range of
cloud applications, ranging from large-scale data processing
to data sharing and analysis. Our paper has presented one
example based on MapReduce, but the applicability of DS2
is sufficiently broad to enable a variety of data sharing ap-
plications on the cloud, particularly those related to social
networking and cloud analytics [4]. To bootstrap the usage
of DS2, we are exploring utilizing DS2 as a separate ex-
tensible trust management policy engine incorporated into
existing distributed computing software (e.g. Hadoop), and
potentially integrating our system with existing cloud ana-
lytics tools.

A security solution for secure cloud data management is
not complete unless there are mechanisms for cloud providers
and users to debug, analyze, and diagnose distributed queries
executed in cloud environments. We believe that distributed
provenance is an important step toward realizing a secure
cloud data management infrastructure. We have recently
added provenance support to the DS2 platform, and are ac-
tively developing techniques for ensuring the integrity and
confidentiality of distributed provenance in the cloud.

10. ACKNOWLEDGMENTS
This work is supported in part by NSF IIS-0812270, NSF

CNS-0831376, NSF CNS-0834524, ONR MURI N00014-07-
1-0907, and OSD/AFOSR MURI on Collaborative Policies
and Assured Information Sharing.

11. REFERENCES
[1] DS2: Declarative Secure Distributed Systems.

http://netdb.cis.upenn.edu/ds2/.

[2] Stanford WebBase.
http://diglib.stanford.edu:8091/~testbed/doc2/WebBase/.

[3] M. Abadi. Logic in Access Control. In Proc. LICS, 2003.

[4] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. Hellerstein,
and R. Sears. BOOM Analytics: Exploring Data-Centric,
Declarative Programming for the Cloud. In Proc. EuroSys,
2010.

[5] The Appleseed Project.
http://opensource.appleseedproject.org/.

[6] N. Bilton. Price of Facebook Privacy? Start Clicking. The New
York Times, 12 May 2010.

[7] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A
characterization of data provenance. In Proc. ICDT, 2001.

[8] M. Christodorescu, R. Sailer, D. L. Schales, D. Sgandurra, and
D. Zamboni. Cloud Security is not (just) Virtualization
Security. In Proc. CCSW, 2009.

[9] T. Condie, D. Chu, J. M. Hellerstein, and P. Maniatis. Evita
raced: Metacompilation for declarative networks. In Proc.
VLDB, 2008.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proc. OSDI, 2004.

[11] J. DeTreville. Binder: A logic-based security language. In Proc.
IEEE S&P, 2002.

[12] Diaspora*. http://www.joindiaspora.com.

[13] J. Dwyer. Four Nerds and a Cry to Arms Against Facebook.
The New York Times, 11 May 2010.

[14] M. H. Feifei Li and G. Kollios. Dynamic authenticated index
structures for outsourced databases. In Proc. SIGMOD, 2006.

[15] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen.
Update exchange with mappings and provenance. In Proc.
VLDB, 2007.

[16] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In Proc. PODS, 2007.

[17] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton, Z. G.
Ives, and V. Tannen. ORCHESTRA: Facilitating Collaborative
Data Sharing. In Proc. SIGMOD, 2007.

[18] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview:
Practical Accountability for Distributed Systems. In Proc.
SOSP, 2007.

[19] R. Hasan, R. Sion, and M. Winslett. The case of the fake
picasso: Preventing history forgery with secure provenance. In
Proc. FAST, 2009.

[20] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER. In
Proc. VLDB, 2003.

[21] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir. Orchestra:
Rapid, collaborative sharing of dynamic data. In Proc. CIDR,
2005.

[22] M. Jensen, J. Schwenk, N. Gruschka, and L. L. Iacono. On
Technical Security Issues in Cloud Computing. In Proc.
CLOUD, 2009.

[23] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data
provenance. In Proc. SIGMOD, 2010.

[24] B. Lampson, M. Abadi, M. Burrows, and E. Wobber.
Authentication in Distributed Systems: Theory and Practice.
ACM TOCS, 1992.

[25] M. Liu, N. Taylor, W. Zhou, Z. Ives, and B. T. Loo. Recursive
computation of regions and connectivity in networks. In Proc.
ICDE, 2009.

[26] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing Declarative Overlays.
In Proc. SOSP, 2005.

[27] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan.
Declarative Routing: Extensible Routing with Declarative
Queries. In Proc. SIGCOMM, 2005.

[28] W. R. Marczak, S. S. Huang, M. Bravenboer, M. Sherr, B. T.
Loo, and M. Aref. SecureBlox: Customizable Secure
Distributed Data Processing. In Proc. SIGMOD, 2010.

[29] W. R. Marczak, D. Zook, W. Zhou, M. Aref, and B. T. Loo.
Declarative reconfigurable trust management. In Proc. CIDR,
2009.

[30] R. C. Merkle. Secrecy, Authentication, and Public Key
Systems. PhD thesis, Stanford University, 1979.

[31] K. Mouratidis, D. Sacharidis, and H. Pang. Partially
materialized digest scheme: an efficient verification method for
outsourced databases. VLDB Journal, 2009.

[32] S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea, and
B. T. Loo. Declarative toolkit for rapid network protocol
simulation and experimentation. In SIGCOMM (demo), 2009.

[33] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication
and integrity in outsourced databases. In Proc. NDSS, 2004.

[34] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman,
L. Youseff, and D. Zagorodnov. The Eucalyptus Open-Source
Cloud-Computing System. In Proc. CCGRID, 2009.

[35] H. Pang and K.-L. Tan. Verifying Completeness of Relational
Query Answers from Online Servers. ACM TISSEC, 2008.

[36] R. Perez, L. van Doorn, and R. Sailer. Virtualization and
Hardware-Based Security. In Proc. IEEE S&P, 2008.

[37] H. Raj, R. Nathuji, A. Singh, and P. England. Resource
Management for Isolation Enhanced Cloud Services. In Proc.
CCSW, 2009.

[38] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy.
Extending query rewriting techniques for fine-grained access
control. In Proc. SIGMOD, 2004.

[39] M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and
M. Blaze. A3: An Extensible Platform for Application-Aware
Anonymity. In Proc. NDSS, 2010.

[40] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In Proc. SIGCOMM, 2001.

[41] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. Managing
Security of Virtual Machine Images in a Cloud Environment. In
Proc. CCSW, 2009.

[42] W. Zhou, Y. Mao, B. T. Loo, and M. Abadi. Unified
Declarative Platform for Secure Networked Information
Systems. In Proc. ICDE, 2009.

[43] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao.
Efficient querying and maintenance of network provenance at
internet-scale. In Proc. SIGMOD, 2010.

[44] M. Zuckerberg. From Facebook, Answering Privacy Concerns
with New Settings. The Washington Post, 24 May 2010.

http://netdb.cis.upenn.edu/rapidnet/downloads.html
http://netdb.cis.upenn.edu/rapidnet/downloads.html
http://netdb.cis.upenn.edu/ds2/
http://diglib.stanford.edu:8091/~testbed/doc2/WebBase/
http://opensource.appleseedproject.org/
http://www.joindiaspora.com

	Introduction
	Motivating Examples
	Challenges
	DS2 Platform
	Secure Query Processing
	Example: Authenticated MapReduce
	Preliminary Evaluation

	Access Control
	View-based Access Control
	Multi-user Multi-stage MapReduce

	Distributed Provenance
	Usage of Provenance in the Cloud
	Computing Distributed Provenance

	End-to-End Query Verification
	Conclusion and Future Work
	Acknowledgments
	References

