
Recent Advances in Declarative Networking

Boon Thau Loo1 Harjot Gill1 Changbin Liu1 Yun Mao2

William R. Marczak3 Micah Sherr4 Anduo Wang1 Wenchao Zhou1

1 University of Pennsylvania
2 AT&T Labs Research

3 University of California Berkeley
4 Georgetown University

{boonloo,gillh,cliu,anduo,wenchaoz}@cis.upenn.edu maoy@research.att.com
wrm@berkeley.edu msherr@cs.georgetown.edu

Abstract. Declarative networking is a programming methodology that
enables developers to concisely specify network protocols and services,
and directly compile these specifications into a dataflow framework for
execution. This paper describes recent advances in declarative network-
ing, tracing its evolution from a rapid prototyping framework towards a
platform that serves as an important bridge connecting formal theories
for reasoning about protocol correctness and actual implementations. In
particular, the paper focuses on the use of declarative networking for
addressing four main challenges in the distributed systems development
cycle: the generation of safe routing implementations, debugging, secu-
rity and privacy, and optimizing distributed systems.

1 Introduction

Declarative networking [27–29, 31] is a programming methodology that enables
developers to concisely specify network protocols and services using a distributed
recursive query language, and directly compile these specifications into a dataflow
framework for execution. This approach provides ease and compactness of spec-
ification, and offers additional benefits such as optimizability and the potential
for safety checks. The development of declarative networking began in 2004 with
an initial goal of enabling safe and extensible routers [30].

As evidence of its widespread applicability, declarative techniques have been
used in several domains including fault tolerance protocols [52], cloud comput-
ing [4], sensor networks [11], overlay network compositions [33], anonymity sys-
tems [51], mobile ad-hoc networks [37, 24], wireless channel selection [23], net-
work configuration management [10], and as a basis for course projects in a
distributed systems class [14] at the University of Pennsylvania. An open-source
declarative networking system called RapidNet [3] has also been integrated with
the emerging ns-3 [40] simulator, demonstrated at SIGCOMM’09 [38], and suc-
cessfully deployed on testbeds such as PlanetLab [44] and ORBIT [42].

This paper will first present a background introduction to declarative net-
working (Section 2). We trace its evolution from a rapid prototyping framework
to a platform that serves as an important bridge connecting formal theories for
reasoning about protocol correctness and actual implementations. The ability to
bridge this gap is a major step forward compared to traditional approaches in



which formal specifications, proof of protocol correctness and implementations
are decoupled from one another; this decoupling leads to increased development
time, error prone implementations, and tedious debugging.

Specifically, this paper describes recent work carried out within the
NetDB@Penn [39] research group to address four significant challenges in dis-
tributed systems: generating safe routing implementations (Section 3), securing
distributed systems (Section 4), debugging distributed systems (Section 5), and
optimizing distributed systems (Section 6).

2 Background

The high level goal of declarative networks is to build extensible architectures
that achieve a good balance of flexibility, performance and safety. Declarative
networks are specified using Network Datalog (NDlog), a distributed recursive
query language for querying networks.

NDlog enables a variety of routing protocols and overlay networks to be spec-
ified in a natural and concise manner. For example, traditional routing protocols
such as the path vector and distance-vector protocols can be expressed in a few
lines of code [31], and the Chord distributed hash table in 47 lines of code [29].
When compiled and executed, these declarative protocols perform efficiently rel-
ative to imperative implementations.

In addition to ease of implementation, another advantage of the declara-
tive networking approach is its amenability to formal and structured forms of
correctness checks. These include the use of theorem proving [53], algebraic tech-
niques for constructing safe routing protocols [54], and runtime verification [61].
These formal analysis techniques are strengthened by recent work on formally
proving correct operational semantics of NDlog [41]. Finally, the dataflow frame-
work used in declarative networking naturally captures information flow as dis-
tributed queries, hence providing a natural way to use the concept of network
provenance [60] to analyze and explain the existence of any network state.

NDlog is based on Datalog [46]: a Datalog program consists of a set of declar-
ative rules. Each rule has the form p :- q1, q2, ..., qn., which can be read
informally as “q1 and q2 and ... and qn implies p”. Here, p is the head of the
rule, and q1, q2,...,qn is a list of literals that constitutes the body of the rule.
Literals are either predicates with attributes (which are bound to variables or
constants by the query), or boolean expressions that involve function symbols
(including arithmetic) applied to attributes.

Datalog rules can refer to one another in a mutually recursive fashion. The
order in which the rules are presented in a program is semantically immate-
rial; likewise, the order predicates appear in a rule is not semantically mean-
ingful. Commas are interpreted as logical conjunctions (AND). Conventionally,
the names of predicates, function symbols, and constants begin with a lowercase
letter, while variable names begin with an uppercase letter. Function calls are
additionally prepended by f . Aggregate constructs are represented as functions
with attribute variables within angle brackets (<>). We illustrate NDlog using a
simple two rule program that computes all pairs of reachable nodes in a network:

r1 reachable(@S,N) :- link(@S,N).
r2 reachable(@S,D) :- link(@S,N), reachable(@N,D).



Rules r1 and r2 specify a distributed transitive closure computation, where
rule r1 computes all pairs of nodes reachable within a single hop from all input
links (denoted by the link predicate), and rule r2 expresses that “if there is a
link from S to N, and N can reach D, then S can reach D.” The output of interest
is the set of all reachable(@S,D) tuples, representing reachable pairs of nodes
from S to D. By modifying this simple example, we can construct more complex
routing protocols, such as the distance vector and path vector routing protocols.

NDlog supports a location specifier in each predicate, expressed with the @

symbol followed by an attribute. This attribute is used to denote the source
location of each corresponding tuple. For example, all reachable and link tuples
are stored based on the @S address field.

2.1 Query Evaluation

In declarative networking, each node runs its own set of NDlog rules. Typically,
these rules are common across all nodes (that is, all nodes run the same proto-
col), but may further include per-node policy customizations. NDlog rules are
compiled and executed as distributed dataflows by the query processor to im-
plement various network protocols. These dataflows share a similar execution
model with the Click modular router [21], which consists of elements that are
connected together to implement a variety of network and flow control compo-
nents. In addition, elements include database operators (such as joins, aggrega-
tion, and selections) that are directly generated from the NDlog rules. Messages
flow among dataflows executed at different nodes, resulting in updates to local
tables, or query results that are returned to the hosts that issued the queries.
The local tables store the network state of various network protocols.

To execute NDlog programs, we use the pipelined semi-näıve (PSN) model [27].
PSN extends the traditional semi-näıve Datalog evaluation strategy [9] to work
in an asynchronous distributed setting. PSN relaxes semi-näıve evaluation to the
extreme of processing each tuple as it is received. This provides opportunities
for additional optimizations on a per-tuple basis. New tuples that are gener-
ated from the semi-näıve rules, as well as tuples received from other nodes, are
used immediately to compute new tuples without waiting for the current (local)
iteration to complete.

In practice, most network protocols execute over a long period of time and in-
crementally update and repair routing tables as the underlying network changes
(for example, due to link failures, and node departures). To better map into prac-
tical networking scenarios, one key distinction that differentiates the execution
of NDlog from earlier work in Datalog is our support for continuous rule exe-
cution and result materialization, where all tuples derived from NDlog rules are
materialized and incrementally updated as the underlying network changes. As
in network protocols, such incremental maintenance is required both for timely
updates and for avoiding the overhead of recomputing all routing tables “from
scratch” whenever there are changes to the underlying network. In the pres-
ence of insertions and deletions to base tuples, our original incremental view
maintenance implementation utilizes the count algorithm [17] that ensures only
tuples that are no longer derivable are deleted. This has subsequently been im-
proved [36] via the use of a compact form of data provenance encoded using
binary decision diagrams shipped with each derived tuple.



2.2 Language Extensions

In our original work [29], predicates are allowed to be declared as soft-state with
lifetimes. In the extreme case, event predicates form transient tables which are
used as input to rules but are not stored. To support wireless broadcast [24, 37],
we have introduced a broadcast location specifier denoted by @* which causes a
tuple to be broadcast to all nodes within wireless range of the node on which the
rule is executed. In order to support network functionality composition and code
reuse, we introduced Composable Virtual Views [33], which define rule groups
that perform a specific functionality when executed together. These extensions
offer different levels of declarativity [32] to meet various application demands.

The meaning of a NDlog program is defined to be the behavior and output ob-
tained by running the program through PSN evaluation [27, 41]. The Dedalus [19,
5] language is similar to NDlog, except its behavior and output is defined in terms
of a model-theoretic semantics. Dedalus also allows users to write rules that mu-
tate state.

Dedalus takes base Datalog, and adds an integer timestamp field to every
tuple. State update is expressed as locally-stratified recursion through negation.
Message delay and re-ordering is captured by requiring all rules to derive non-
local tuples at some non-deterministic future timestamp. Dedalus uses Saccà
and Zaniolo’s choice construct [49] to model this non-determinism, which man-
ifests itself in multiple stable models [13] – one model for each possible choice of
timestamp.

An interesting question is to what extent the behavior and output of the
program is “well-behaved.” The CALM Conjecture, posed by Hellerstein [19]
states that monotonic coordination-free Dedalus programs are eventually consis-
tent, and non-monotonic programs are eventually consistent when instrumented
with appropriate coordination. Recently, Ameloot et al. explored Hellerstein’s
CALM conjecture using relational transducers [6]. They proved that monotonic
first order queries are exactly the set of queries that can be computed in a
coordination-free fashion in their transducer formalism. Their work uses some
different assumptions than traditional declarative networking—for example, they
assume that all messages sent by a node are multicast to a fixed set of neighbors,
whereas NDlog permits arbitrary unicast.

3 Generating Safe Routing Implementations

Our Formally Verifiable Routing (FVR) project addresses a long-standing chal-
lenge in networking research: bridging the gap between formal routing theories
and actual implementations. The application of declarative networking is espe-
cially useful here, serving as an intermediary layer between high-level formal
specifications of the network design and low-level implementations.

3.1 Formally Safe Routing Toolkit

The Formally Safe Routing (FSR) toolkit [54] attempts to bridge this gap in the
context of interdomain routing by unifying research in routing algebras [16] with
declarative networking to produce provably correct distributed implementations.
Specifically, FSR automates the process of analyzing routing configurations ex-
pressed in algebra for safety (i.e. convergence) using the Yices SMT solver [55],



and automatically compiles routing algebra into declarative routing implemen-
tations.

To enable an evaluation of protocol dynamics and convergence time, FSR
uses our extended routing algebra [54] to automatically generate a distributed
routing-protocol implementation that matches the policy configuration — avoid-
ing the time-consuming and error-prone task of manually creating an implemen-
tation. FSR generates a provably correct translation to a NDlog specification,
which is then executed using the RapidNet declarative networking engine.

Our choice of NDlog as the basis for FSR is motivated by the following. First,
the declarative features of NDlog allow for straightforward translation from the
routing algebra to NDlog programs. Second, NDlog enables a variety of routing
protocols and overlay networks to be specified in a natural and concise manner.
Given that NDlog specifications are orders of magnitude less code than impera-
tive implementations, this makes possible a clean and concise proof (via logical
inductions) of the correctness of the generated NDlog programs with regard to
safety. The compact specifications also make it easy to incorporate alternative
routing mechanisms to the basic path-vector protocol, as we have previously
demonstrated [54]. Finally, when compiled and executed, these declarative pro-
tocols perform efficiently relative to imperative routing implementations.

Our recent prototype demonstration at SIGCOMM’11 [48] shows how FSR
can detect problems in an AS’s iBGP configuration (using realistic topologies
and policies). We have also used our system to prove sufficient conditions for
BGP safety and empirically evaluate protocol dynamics and convergence time.

FSR serves two important communities. For researchers, FSR automates
important parts of the design process and provides a common framework for
describing, evaluating, and comparing new safety guidelines. For network opera-
tors, FSR automates the analysis of internal router (iBGP) and border gateway
(eBGP) configurations for safety violations. For both communities, FSR auto-
matically generates realistic protocol implementations to evaluate real network
configurations (e.g., to study convergence time) prior to actual deployment.

3.2 Declarative Network Verification
In addition to the FSR toolkit, we have also explored the use of theorem prov-
ing for verifying declarative networking programs. We have developed the DNV
(Declarative Network Verification) [53] toolkit that demonstrate the feasibility
of automatically compiling declarative networking programs written in NDlog
into formal specifications recognizable by a theorem prover (e.g., PVS [2]) for
verification. Unlike model checkers, DNV can express properties beyond the tem-
poral properties to which most model-checking techniques are restricted. They
also avoid the state exploration problem inherent in model checking. Theorem
proving techniques are also sound and complete: once a property is verified, it
holds for all instances of the protocol. Moreover, modern theorem provers come
with powerful proof engines that support a large portion of automated proof
exploration, enabling the proof of non-trivial theorems with relatively modest
human effort.

4 Securing Distributed Systems
The Declarative Secure Distributed Systems (DS2) platform provides high-level
programming abstractions for implementing secure distributed systems, achieved



by unifying declarative networking and logic-based access control
specifications [12]. DS2 has a wide range of applications, including reconfig-
urable trust management [35], secure distributed data processing [34], and tun-
able anonymity [51].

DS2 is motivated in part by the observation that distributed trust manage-
ment languages share similarities with both data integration languages and the
distributed Datalog languages proposed for declarative networking. These lan-
guages support the notion of context (location) to identify components (nodes) in
distributed systems. The commonalities between these languages indicate that
ideas and methods from the database community are also applicable to process-
ing security policies, suggesting the unification of these declarative languages to
create an integrated system.

The DS2 system is currently available for download [47].

4.1 Secure Network Datalog

We developed the Secure Network Datalog (SeNDlog) language [59] that uni-
fies NDlog and logic-based languages for access control in distributed systems.
SeNDlog enables network routing, information systems, and security policies to
be specified and implemented within a common declarative framework. We have
additionally extended existing distributed recursive query processing techniques
to execute SeNDlog programs to incorporate secure communication among un-
trusted nodes.

In SeNDlog, we bind a set of rules and the associated tuples to reside at a
particular node. We do this at the top level for each rule (or set of rules), for
example by specifying:

At N,
r1 p :- p1,p2,...,pn.
r2 p1 :- p2,p3,...,pn.

The above rules r1 and r2 are in the context of N, where N is either a variable
or a constant representing the principal where the rules reside. If N is a variable,
it will be instantiated with local information upon rule installation. In a trusted
distributed environment, N simply represents the network address of a node: ei-
ther a physical address (e.g., an IP address) or a logical address (e.g., an overlay
identifier). In a multi-user multi-layered network environment where multiple
users and overlay networks may reside on the same physical node, N can in-
clude the user name and an overlay network identifier. This is unlike declarative
networking in which location specifiers denote physical IP address.

SeNDlog allows different principals or contexts to communicate via import
and export of tuples. The communication serves two purposes: (1) maintenance
messages as part of a network protocol’s updates on routing tables, and (2)
distributed derivation of security decisions. Imported tuples from a principal N
are automatically quoted using “N says” to differentiate them from local tuples.
During the evaluation of SeNDlog rules, we allow derived tuples to be commu-
nicated among contexts via the use of import predicates and export predicates:

• An import predicate is of the form “N says p” in a rule body, where principal
N asserts the predicate p.



• An export predicate is of the form “N says p@X” in a rule head, where principal
N exports the predicate p to the context of principal X. Here, X can be a constant
or a variable. If X is a variable, in order to make bottom-up evaluation efficient,
we further require that the variable X occur in the rule body. As a shorthand,
we can omit “N says” if N is the principal where the rule resides.

By exporting tuples only to specified principals, the use of export predicates
ensures confidentiality and prevents information leakage. With the above defini-
tions, a SeNDlog rule is a Datalog rule where the rule body can include import
predicates and the rule head can be an export predicate.

We provide a concrete example based on the declarative path vector protocol
as presented in the original declarative routing [31] paper: At every node Z, this
program takes as input neighbor(Z,X) tuples that contain all neighbors X for
Z. The program generates route(Z,X,P) tuples, each of which stores the path P

from source Z to destination X. The basic protocol specification is similar to the
all-pairs reachable example presented in Section 2, with additional predicates for
computing the actual path using the f concat function which prepends neighbor
X to the input path P.

The input carryTraffic and acceptRoute tables respectively represent the
export and import policies of node Z. Each carryTraffic(Z,X,Y) tuple represents
the fact that node Z is willing to serve all network traffic on behalf of node X to
node Y, and each acceptRoute(Z,Y,X) tuple represents the fact that node Z will
accept a route from node X to node Y. A more complex version of this protocol
will have additional rules that derive carryTraffic and acceptRoute, avoid path
cycles and also derive shortest paths with the least hop count.

The path-vector protocol is used for inter-domain routing over the Inter-
net and is known to be vulnerable to a variety of attacks due to the lack of
mechanisms for verifying the authenticity and authorization of routing control
traffic. One potential solution is to authenticate every routing control message,
as proposed for Secure BGP [50].

At Z,
z1 route(Z,X,P) :- neighbor(Z,X), P=f_initPath(Z,X).
z2 route(Z,Y,P) :- X says advertise(Y,P), acceptRoute(Z,X,Y).
z3 advertise(Y,P1)@X :- neighbor(Z,X), route(Z,Y,P),

carryTraffic(Z,X,Y), P1=f_concat(X,P).

In our example program, we can specify such authentication naturally via the
use of “says” to ensure that all advertise tuples are verified by the recipients for
authenticity. Rule z1 takes as input neighbor(Z,X) tuples, and computes all the
single hop route(Z,X,P) containing the path [Z,X] from node Z to X. Rules z2 and
z3 compute routes of increasing hop counts. Upon receiving an advertise(Y,P)

tuple from X, Z uses rule z2 to decide whether to accept the route advertisement
based on its local acceptRoute table. If the route is accepted, a route tuple is
derived locally, and this results in the generation of an advertise tuple which is
further exported by node Z via rule z3 to some of its neighbors X as determined
by the policies stored in the local carryTraffic table.

SeNDlog is able to compactly specify a variety of secure distributed protocols.
Our earlier work [59] has demonstrated, for example, the use of SeNDlog for
performing secure distributed joins and securing distributed hash tables [8].



4.2 Reconfigurable Security

Although one can achieve a high level of security using a “one-size-fits-all” solu-
tion with fixed constructs like says, an extensible trust management framework
where users can write and reconfigure their own constructs like says is appli-
cable to a much broader range of settings. For example, programmers could
customize the security protocols used by their application based on the execu-
tion environment without modifying the application logic. In the LBTrust [35]
work, we extended SeNDlog to support user-defined security constructs that can
be customized and composed in a declarative fashion. To validate our ideas in a
production system, we implemented our extension in the LogicBlox [26] system,
an emerging commercial Datalog-based platform for enterprise software systems.

We enhanced LogicBlox to support meta-rules — Datalog rules that operate
on the rules of the program as input, and produce new rules as output — and
meta-constraints — Datalog constraints that restrict the allowable rules in the
program. Security constructs are written using these two ingredients. For ex-
ample, the says construct would consist of meta-rules that rewrite the program
to perform signing of all exported messages, and constraints that ensure that
all imported messages have valid signatures. We demonstrate that a variety of
security primitives for authentication, confidentiality, integrity, speaks-for, and
restricted delegation can be supported. Based on these primitives, several exist-
ing distributed trust management systems (e.g., Binder [12], SD3 [20], Delegation
Logic [22], and SeNDlog) can be implemented in LBTrust.

A follow-up to LBTrust is the SecureBlox [34] system, which restricts the use
of meta-programming to make it a fully static, compile-time operation. We added
support for physical distribution to LBTrust, and looked at performance-security
tradeoffs between different constructs in distributed systems. Similar to LBTrust,
SecureBlox allows meta-programmability for compile-time code generation based
on the security requirements and trust policies of the deployed environment.

While we specifically study security in the LBTrust and SecureBlox work, the
general pattern of using meta-programming to decompose a logic program into
different aspects representing cross-cutting concerns is more broadly applicable.

4.3 Application-aware Anonymity

To further illustrate the feasibility of our methods and technologies for the devel-
opment of secure distributed systems, we have conceptualized and implemented
the Application-Aware Anonymity (A3) system [7, 51], a distributed peer-to-
peer service that provides high-performance anonymity “for the masses”. A3

uses SeNDlog for implementing an extensible policy engine for customizing its
relay selection and instantiation strategies. A3 allows applications to construct
anonymous Onion [15] paths that adhere to application specific constraints (e.g.,
end-to-end latency). Unlike existing anonymity systems that construct paths ac-
cording to predefined criteria, A3 enables applications to specify the require-
ments of their anonymous paths. For example, anonymized Voice-over-IP ser-
vices can request paths with low latency and modest bandwidth requirements,
while streaming video broadcasts can request high bandwidth anonymous paths
without regard for latency. A3 is open-source and available for download [7].



link(@b,c,2)

VID1=SHA1("link"+b+c+2)

link(@b,a,3)

VID2=SHA1("link"+b+a+3)

link(@a,c,5)

VID3=SHA1("link"+a+c+5)

pathCost(@b,c,2)

VID4=SHA1("pathCost"+b+c+2)

pathCost(@a,c,5)

VID5=SHA1("pathCost"+a+c+5)

sp2@b

RID3=SHA1("sp2"+b+VID2+VID6)

bestPathCost(@b,c,2)

VID6=SHA1("bestPathCost"+b+c+2)

bestPathCost(@a,c,5)

VID7=SHA1("bestPathCost"+a+c+5)
sp3@a

RID5=SHA1("sp3"+a+VID5)

sp1@b

RID1=SHA1("sp1"+b+VID1)

sp1@a

RID2=SHA1("sp1"+a+VID3)

sp3@b

RID4=SHA1("sp3"+b+VID4)

Fig. 1. The provenance graph of the tuple bestPathCost(@a,c,5) derived from the
execution of the MinCost program.

5 Debugging Distributed Systems

In the context of distributed systems, it is very common for system administra-
tors to perform analysis tasks that essentially amount to network provenance [60]
queries. For example, they might ask diagnostic queries to determine the root
cause of a malfunction, forensic queries to identify the source of an intrusion, or
profiling queries to find the reason for suboptimal performance.

The NetTrails [58, 60] system is a declarative platform for incrementally
maintaining, interactively navigating, and querying network provenance in a
distributed system. During the system execution, NetTrails incrementally main-
tains provenance information using RapidNet as its distributed query engine.
Our architecture offers a unifying framework, as both maintenance and query-
ing functionalities are specified as NDlog programs.

NetTrails consists of two subcomponents: First, a maintenance engine takes
as input either NDlog programs or input/output dependencies captured from
legacy applications, and then incrementally computes and maintains network
provenance information as distributed relational tables. Second, a distributed
query engine executes user-customizable provenance queries that are evaluated
across multiple nodes. Legacy systems are supported either by modifying the
application’s source code to explicitly report provenance, or by using an external
specification of the application’s protocol to derive provenance information by
observing a node’s inputs and outputs [57].

5.1 Network Provenance Model

In NetTrails, the provenance graph is internally maintained as relational tables
which are distributed and partitioned across all nodes in the network. Network
provenance is modeled as an acyclic graph G(V,E). The vertex set V consists of
tuple vertices and rule execution vertices. Each tuple vertex in the graph is either
a base tuple or a computation result, and each rule execution vertex represents
an instance of a rule execution given a set of input tuples. The edge set E
represents dataflows between tuples and rule execution vertices.

To illustrate, we consider an example network consisting of three nodes a, b
and c connected by three bi-directional links (a,b), (a,c) and (b,c) with costs
3, 5 and 2 respectively. We further consider the following three-rule MinCost
program that computes the minimal path cost between each pair of nodes:
sp1 pathCost(@S,D,C) :- link(@S,D,C).
sp2 pathCost(@S,D,C1+C2) :- link(@Z,S,C1), bestPathCost(@Z,D,C2).
sp3 bestPathCost(@S,D,min<C>) :- pathCost(@S,D,C).

Figure 1 shows the provenance for a specific derived tuple bestPathCost(@a,c,5),
based on the dependency logic captured by the MinCost program. For instance,



Fig. 2. A screenshot of the NetTrails demonstration at SIGMOD’11.

the figure shows that bestPathCost(@a,c,5) is generated from rule sp3 at node
a taking pathCost(@a,c,5) as the input. To trace further, pathCost(@a,c,5) has
two derivations: the locally derivable one-hop path a→ c and the two-hop path
a→ b→ c that requires a distributed join at b.

5.2 Distributed Maintenance and Querying
Given the adoption of a declarative networking engine, data dependencies are ex-
plicitly captured in derivation rules.5 The provenance maintenance in a dynamic
system execution can be performed in a straightforward manner: an automatic
rule rewrite algorithm takes as input a set of derivation rules, and outputs a
modified program that contains additional rules for capturing the provenance
information. These additional rules define network provenance in terms of views
over base and derived tuples. As the network protocol executes and updates
network state, views are incrementally recomputed.

Once generated, network provenance can be queried by issuing distributed
queries. Since provenance information is distributed across nodes, query execu-
tion performs a traversal of the provenance graphs in a distributed fashion.

NetTrails allows users to customize the provenance queries. For instance,
users can query for a tuple’s lineage, the set of nodes that have been involved in
the derivation of a given tuples, and/or the total number of alternative deriva-
tions. To reduce querying overhead, NetTrails adopts a set of optimization tech-
niques [60], including caching previously queried results, leveraging alternative
tree traversal orders, and performing threshold-based pruning.

An early prototype of NetTrails was presented at SIGMOD’11 [58]. Figure 2
shows an example execution of the current version of the demonstration that
highlights the provenance of the system state (captured as tuples) for a running
MinCost program. One may further issue customized provenance queries and
visually inspect the progressive steps of the distributed querying.

5.3 Security and Temporal Extensions
NetTrails provides functionality required for richer provenance queries by adding
(i) new provenance models and maintenance strategies for capturing the time,
distribution, and causality of updates in distributed systems [56], and (ii) novel
query processing and optimization techniques for efficiently and securely answer-
ing queries at scale [57].

5 For legacy applications, the data dependencies (reported by the modified source code
or inferred from the observed I/Os) can be formulated as derivation rules as well [57].



NetTrails explicitly captures causality: if some network state α depends on
some other state β, and β is changed, the provenance of the change in α is at-
tributable to the change in β. Additionally, since one of our potential use cases
is forensics, NetTrails achieves strong security guarantees even in the presence of
misbehaving and potentially malicious nodes. NetTrails utilizes secure network
provenance [57] to provide the strong guarantee that either a returned prove-
nance query is accurate and complete, or that a misbehaving node is identified
with non-repudiable evidence against the node.

To demonstrate the capabilities of NetTrails’s temporal and security exten-
sions, we describe a number of use cases of our system, as presented in [57].

Network Routing. The Border Gateway Protocol (BGP) used for interdomain
routing over the Internet is plagued by a variety of attacks and malfunctions. We
have applied NetTrails to the Quagga BGP daemon [45] and demonstrated how
our solution enables a network administrator to determine why an entry from
a routing table has disappeared. We also showed how NetTrails can be used to
detect well-known BGP misconfigurations.

Distributed Hash Tables. We have applied NetTrails to a declarative imple-
mentation of the Chord [29] distributed hash table; no modifications are required
to the Chord source code. We demonstrated NetTrails’ ability to detect a well-
known attack against Chord in which the attacker gains control over a large
fraction of the neighbors of a correct node, and is then able to drop or reroute
messages to this node and prevent correct overlay operation.

Hadoop MapReduce. Finally, we have applied NetTrails to Hadoop MapRe-
duce [18]. We manually instrumented Hadoop to report provenance at the level
of individual key-value pairs. We used Hadoop to encode the WordCount pro-
gram that reports the number of occurrences of each word in a 1.2 GB Wikipedia
dataset. In this scenario, we queried for the provenance of a given (unlikely) key-
value pair in the output. NetTrails revealed that unexpected results might be
attributed to a faulty or compromised map worker. More generally, NetTrails
was able to identify the causes of suspicious MapReduce outputs.

6 Optimizing Distributed Systems

In distributed systems management, operators often configure system parame-
ters that optimize performance objectives, given constraints in the deployment
environment. In this section we present our recent work on a declarative opti-
mization platform that enables constraint optimization problems (COP) to be
declaratively specified and incrementally executed in distributed systems.

Traditional COP implementation approaches use imperative languages such
as C++ or Java and often result in cumbersome and error-prone programs that
are difficult to maintain and customize. Moreover, due to scalability and manage-
ment constraints imposed across administrative domains, it is often necessary to
execute COP in a distributed setting in which multiple local solvers must coordi-
nate with one another. Each local solver handles a portion of the whole problem,
and they together achieve a global objective.

Central to our optimization platform is the integration of a declarative net-
working engine [28] with an off-the-shelf constraint solver [1]. We highlight two
use cases to which we have applied our platform:



6.1 Use Cases: PUMA and COPE

First, we have developed the Policy-based Unified Multi-radio Architecture
(PUMA), a declarative constraint solving platform for optimizing wireless mesh
networks. In PUMA, network operators can flexibly vary the choice of routing via
adaptable hybrid routing protocols [24]. The hybrid technique combines several
existing protocols (e.g., proactive, reactive, and epidemic) with specific criteria
for determining when particular protocols are to be used. The hybrid composi-
tional capabilities are particularly useful for routing in heterogeneous network
settings in which application needs and network conditions keep changing over
time. In addition, PUMA enables policies for wireless channel selection [23] to
be declaratively specified and optimized; such policies may reduce network inter-
ference and maximize throughput while not violating constraints (for instance,
refraining from channels owned exclusively by the primary users [43]).

Second, in our Cloud Orchestration Policy Engine (COPE) [25], we use our
optimization framework to declaratively control the provisioning, configuration,
management and decommissioning of cloud resource orchestration. COPE en-
ables the automatic realization of customer service level agreements while simul-
taneously conforming to operational objectives of the cloud providers.

Beyond these two use cases, we envision that our platform has a wide-range
of potential applications, including optimizing distributed systems for load bal-
ancing, robust routing, scheduling, and security.

6.2 Colog Language and Compilation

Our optimization platform uses the Colog declarative policy language. Colog al-
lows operators to concisely model distributed system resources and formulate
management decisions as declarative programs with specified goals and con-
straints. Compared to traditional imperative alternatives, Colog results in code
that is smaller by orders of magnitude, and is easier to understand, debug and
extend. Here, we present high level intuitions of Colog; a more comprehensive
treatment of the language can be found in our earlier work [23, 25].

Language extensions. Based on NDlog, Colog extends traditional NDlog
with constructs for expressing goals and constraints. Two reserved keywords —
goal and var — respectively specify the optimization goal and variables used by
the constraint solver. Constraint rules of the form F1 -> F2, F3, ..., Fn denote
that whenever F1 is true, then the rule body (F2 and F3 and ... and Fn) must
also be true to satisfy the constraint. Unlike a Datalog rule which derives new
values for a predicate, a constraint restricts a predicate’s allowed values, hence
representing an invariant that must be maintained at all times. These are used
by the solver to limit the search space when computing the optimization goal.
Using Colog, it is easy to customize policies simply by modifying the goals and
constraints, and by adding additional derivation rules.

Distributed COP. Colog is extended for execution in a distributed setting.
At a high level, multiple solver nodes execute a local COP, and then iteratively ex-
change COP results with neighboring nodes until a stopping condition is reached.
Similar to NDlog, in the distributed COP program, a location specifier @ denotes
the source location of each corresponding tuple. This allows us to write rules in
which the input data span multiple nodes — a convenient language construct
for formulating distributed optimizations.



One of the interesting aspects of Colog, from a query processing standpoint,
is our integration of RapidNet (an incremental bottom-up distributed Data-
log evaluation engine) and Gecode (a top-down goal-oriented constraint solver).
This integration allows us to implement a distributed solver that can perform
incremental and distributed constraint optimizations.

To execute distributed COP rules, Colog uses RapidNet, which already pro-
vides a runtime environment for implementing these rules. At a high level, each
distributed rule or constraint (with multiple distinct location specifiers) is rewrit-
ten using a localization rewrite [28] step. This transformation results in rule
bodies that can be executed locally and rule heads that can be derived and sent
across nodes. The beauty of this rewrite is that even if the original program
expresses distributed properties and constraints, the rewrite process will realize
multiple local COP operations at different nodes, and have the output of COP
operations via derivations sent across nodes.

7 Acknowledgments
Our work on declarative networking has been generously funded by NSF (CNS-
0721845, CNS-0831376, IIS-0812270, CCF-0820208, CNS-0845552, CNS-1040672,
CNS-1065130, and CNS-1117052), AFOSR MURI grant FA9550-08-1-0352,
DARPA SAFER award N66001-11-C-4020, and DARPA Air Force Research Lab-
oratory (AFRL) Contract FA8750-07-C-0169. We would also like to thank our
collaborators listed on the NetDB@Penn site [39] for their contributions to the
various research efforts described in this paper.

References

1. Gecode constraint development environment. http://www.gecode.org/.
2. PVS Specification and Verification System. http://pvs.csl.sri.com/.
3. RapidNet. http://netdb.cis.upenn.edu/rapidnet/.
4. P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. M. Hellerstein, and R. Sears.

Boom Analytics: Exploring Data-Centric, Declarative Programming for the Cloud.
In Proceedings of Eurosys, 2010.

5. P. Alvaro, W. Marczak, N. Conway, J. M. Hellerstein, D. Maier, and R. C. Sears.
Dedalus: Datalog in time and space. Technical Report UCB/EECS-2009-173,
EECS Department, University of California, Berkeley, Dec 2009.

6. T. J. Ameloot, F. Neven, and J. Van den Bussche. Relational Transducers for
Declarative Networking. In PODS, 2011.

7. Application Aware Anonymity. http://a3.cis.upenn.edu/.
8. H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking

Up Data in P2P Systems. Communications of the ACM, Vol. 46, No. 2, 2003.
9. I. Balbin and K. Ramamohanarao. A Generalization of the Differential Approach

to Recursive Query Evaluation. Journal of Logic Prog, 4(3):259–262, 1987.
10. X. Chen, Y. Mao, Z. M. Mao, and J. van der Merwe. Declarative Configuration

Management for Complex and Dynamic Networks. In CoNEXT, 2010.
11. D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and

I. Stoica. The Design and Implementation of a Declarative Sensor Network System.
In 5th ACM Conference on Embedded networked Sensor Systems (SenSys), 2007.

12. J. DeTreville. Binder: A logic-based security language. In IEEE Symposium on
Security and Privacy, 2002.

13. M. Gelfond and V. Lifschitz. The Stable Model Semantics For Logic Programming.
In ICLP/SLP, pages 1070–1080, 1988.



14. H. Gill, T. Saeed, Q. Fei, Z. Zhang, and B. T. Loo. An Open-source and Declarative
Approach Towards Teaching Large-scale Networked Systems Programming. In
SIGCOMM Education Workshop, 2011.

15. D. Goldschlag, M. Reed, and P. Syverson. Onion Routing. Communications of the
ACM, 42(2):39–41, 1999.

16. T. G. Griffin and J. L. Sobrinho. Metarouting. In ACM SIGCOMM, 2005.
17. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views Incremen-

tally. In Proceedings of ACM SIGMOD International Conference on Management
of Data, 1993.

18. Hadoop. http://hadoop.apache.org/.
19. J. M. Hellerstein. Declarative imperative: Experiences and conjectures in dis-

tributed logic. 2010. SIGMOD Record 39(1).
20. T. Jim. SD3: A Trust Management System With Certified Evaluation. In IEEE

Symposium on Security and Privacy, 2001.
21. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

Modular Router. ACM Transactions on Computer Systems, 18(3):263–297, 2000.
22. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based approach

to distributed authorization. ACM TISSEC, 2003.
23. C. Liu, R. Correa, H. Gill, T. Gill, X. Li, S. Muthukumar, T. Saeed, B. T. Loo,

and P. Basu. PUMA: Policy-based Unified Multi-radio Architecture for Agile
Mesh Networking. In 4th International Conference on Communication Systems
and Networks (COMSNETS), 2012.

24. C. Liu, R. Correa, X. Li, P. Basu, B. T. Loo, and Y. Mao. Declarative policy-
based adaptive mobile ad hoc networking. IEEE/ACM Transactions on Networking
(ToN), 2011.

25. C. Liu, B. T. Loo, and Y. Mao. Declarative Automated Cloud Resource Orches-
tration. In ACM Symposium on Cloud Computing (SOCC), 2011.

26. LogicBlox Inc. http://www.logicblox.com/.
27. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,

R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking: Language,
Execution and Optimization. In Proceedings of ACM SIGMOD International Con-
ference on Management of Data, 2006.

28. B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein, P. Maniatis,
R. Ramakrishnan, T. Roscoe, and I. Stoica. Declarative Networking. In Commu-
nications of the ACM (CACM), 2009.

29. B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe, and I. Stoica. Im-
plementing Declarative Overlays. In Proceedings of ACM Symposium on Operating
Systems Principles, 2005.

30. B. T. Loo, J. M. Hellerstein, and I. Stoica. Customizable Routing with Declarative
Queries. In ACM SIGCOMM Hot Topics in Networks, 2004.

31. B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan. Declarative Routing:
Extensible Routing with Declarative Queries. In Proceedings of ACM SIGCOMM
Conference on Data Communication, 2005.

32. Y. Mao. On the declarativity of declarative networking. In ACM NetDB Workshop,
2009.

33. Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. MOSAIC: Unified Platform for
Dynamic Overlay Selection and Composition. In CoNEXT, 2008.

34. W. R. Marczak, S. S. Huang, M. Bravenboer, M. Sherr, B. T. Loo, and M. Aref.
SecureBlox: Customizable Secure Distributed Data Processing. In SIGMOD, 2010.

35. W. R. Marczak, D. Zook, W. Zhou, M. Aref, and B. T. Loo. Declarative Recon-
figurable Trust Management. In Proceedings of Conference on Innovative Data
Systems Research (CIDR), 2009.

36. Mengmeng Liu and Nicholas Taylor and Wenchao Zhou and Zachary Ives and Boon
Thau Loo. Recursive Computation of Regions and Connectivity in Networks. In
Proceedings of IEEE Conference on Data Engineering (ICDE), 2009.



37. S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea, R. Correa, B. T. Loo,
and P. Basu. RapidMesh: declarative toolkit for rapid experimentation of wireless
mesh networks. In WINTECH, 2009.

38. S. C. Muthukumar, X. Li, C. Liu, J. B. Kopena, M. Oprea, and B. T. Loo. Declar-
ative toolkit for rapid network protocol simulation and experimentation. In SIG-
COMM (demo), 2009.

39. NetDB@Penn. http://netdb.cis.upenn.edu/.
40. Network Simulator 3. http://www.nsnam.org/.
41. V. Nigam, L. Jia, B. T. Loo, and A. Scedrov. Maintaining distributed logic pro-

grams incrementally. In 13th International ACM SIGPLAN Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP), 2011.

42. ORBIT - Wireless Network Testbed. http://www.orbit-lab.org/.
43. F. Perich. Policy-based Network Management for NeXt Generation Spectrum Ac-

cess Control. In DySPAN, 2007.
44. PlanetLab. Global testbed. http://www.planet-lab.org/.
45. Quagga Routing Suite. http://www.quagga.net/.
46. R. Ramakrishnan and J. D. Ullman. A Survey of Research on Deductive Database

Systems. Journal of Logic Programming, 23(2):125–149, 1993.
47. RapidNet Declarative Networking Engine. http://netdb.cis.upenn.edu/

rapidnet/.
48. Y. Ren, W. Zhou, A. Wang, L. Jia, A. J. Gurney, B. T. Loo, and J. Rexford. FSR:

Formal Analysis and Implementation Toolkit for Safe Inter-domain Routing. In
ACM SIGCOMM Conference on Data Communication (demonstration), 2011.

49. D. Saccà and C. Zaniolo. Stable Models and Non-Determinism in Logic Programs
with Negation. In PODS, pages 205–217, 1990.

50. Secure BGP. http://www.ir.bbn.com/sbgp/.
51. M. Sherr, A. Mao, W. R. Marczak, W. Zhou, B. T. Loo, and M. Blaze. A3: An

Extensible Platform for Application-Aware Anonymity. In Network and Distributed
System Security, 2010.

52. A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe. BFT Protocols Under
Fire. In USENIX Symposium on Networked Systems Design and Implementation,
2008.

53. A. Wang, P. Basu, B. T. Loo, and O. Sokolsky. Towards declarative network
verification. In 11th International Symposium on Practical Aspects of Declarative
Languages (PADL), 2009.

54. A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam, A. Scedrov,
and C. Talcott. FSR: Formal analysis and implementation toolkit for safe inter-
domain routing. University of Pennsylvania CIS Technical Report No. MS-CIS-
11-10, 2011, http://repository.upenn.edu/cis_reports/954/.

55. Yices. http://yices.csl.sri.com/.
56. W. Zhou, L. Ding, A. Haeberlen, Z. Ives, and B. T. Loo. Tap: Time-aware prove-

nance for distributed systems. In 3rd USENIX Workshop on the Theory and Prac-
tice of Provenance (TaPP ’11), 2011.

57. W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure
network provenance. In Proceedings of ACM Symposium on Operating Systems
Principles, 2011.

58. W. Zhou, Q. Fei, S. Sun, T. Tao, A. Haeberlen, Z. Ives, B. T. Loo, and M. Sherr.
Nettrails: A declarative platform for provenance maintenance and querying in dis-
tributed systems. In SIGMOD (demonstration), 2011.

59. W. Zhou, Y. Mao, B. T. Loo, and M. Abadi. Unified Declarative Platform for
Secure Networked Information Systems. In Proceedings of IEEE Conference on
Data Engineering (ICDE), 2009.

60. W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying and
maintenance of network provenance at Internet-scale. In Proc. SIGMOD, 2010.

61. W. Zhou, O. Sokolsky, B. T. Loo, and I. Lee. Dmac: Distributed monitoring and
checking. In 9th International Workshop on Runtime Verification (RV), 2009.


