
Public Information Exposure Detection:
Helping Users Understand Their Web Footprints

Lisa Singh, Grace Hui Yang, Micah Sherr,
Andrew Hian-Cheong, Kevin Tian, Janet Zhu, Sicong Zhang

Georgetown University
Department of Computer Science

Washington, DC, 20057 USA

Abstract—To help users better understand the potential risks
associated with publishing data publicly, as well as the quantity
and sensitivity of information that can be obtained by com-
bining data from various online sources, we introduce a novel
information exposure detection framework that generates and
analyzes the web footprints users leave across the social web.
Web footprints are the traces of one’s online social activities
represented by a set of attributes that are known or can be
inferred with a high probability by an adversary who has basic
information about a user from his/her public profiles. Our frame-
work employs new probabilistic operators, novel pattern-based
attribute extraction from text, and a population-based inference
engine to generate web footprints. Using a web footprint, the
framework then quantifies a user’s level of information exposure
relative to others with similar traits, as well as with regard to
others in the population. Evaluation over public profiles from
multiple sites (Google+, LinkeIn, FourSquare, and Twitter) shows
that the proposed framework effectively detects and quantifies
information exposure using a small amount of initial knowledge.

I. INTRODUCTION

The popularity of digital communication has led to the
sharing of enormous amounts of personal information on social
media sites. While it is likely that many users of these online
services understand that they are sharing personal information
with strangers, they may not understand the potential risks and
implications of doing so. High levels of exposed information
can (and do) lead to severe consequences such as stalking [17],
identity theft [19], and job loss [20]. Given these possible
life changing risks, it is important for users of online social
networks (OSNs) and other online services to understand
(1) the increase in vulnerability that occurs when they choose
to share different golden nuggets of information online, and
(2) how their privacy risks are further exacerbated when they
share personal information on multiple independent OSNs.
We posit that the lack of intuitive privacy metrics and a
comprehensive exposure detection framework makes it difficult
for users to assess their privacy risks due to online sources of
information. This paper examines this problem of quantifiably
measuring online privacy risks.

Our methods and algorithms can be grouped into a more
general problem that we refer to as public information exposure
detection (PIE detection). The objective of PIE detection is to
develop effective and efficient algorithms for identifying and
quantifying components of a user’s public profile that reduce
the user’s privacy and potentially expose the user to adversarial
behaviors. Our techniques construct users’ individual public
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Fig. 1: The PIE framework.

profiles or web footprints. Web footprints are traces of one’s
social activities represented by a set of attributes that are
known or can be inferred with a high probability by combining
data across sites on the Internet. The adversary’s task is to
digitally “stalk” a victim (which we refer to as the user of
our framework) and discover as much information as possible
about him or her, either through direct observation of posted
information or by gaining knowledge using inference logic.

The proposed framework constructs web footprints (as
would an adversary intent on stalking a user) and reports
to the user his or her particular level of vulnerability based
on the user’s publicly shared information. The framework
(shown in Figure 1) first creates the user’s web footprint by
combining publicly accessible information from various online
services such as social media sites, micro-blogging sites, data
aggregation sites, and search engines. Since much web data
is unstructured, we also introduce a pattern-based attribute
extractor that uses bootstrapped patterns found in a corpus
to extract structured attribute values from the unstructured
text, thereby increasing the amount of usable information for
web footprint construction. In addition to observable data,
probabilistic inference logic is applied to supplement web
footprints with probable attribute value pairs learned using



algebraic dependencies between attribute values in user profiles
on different sites. Finally, we use site-level population data to
further infer the user’s attribute values. To allow for population
level comparison, our framework also quantifies a user’s level
of public information exposure relative to others with similar
traits as well as with regard to others in the population. We
demonstrate the added value of each component within the
framework and show that the combined knowledge from all
three complementary components is greater than any subset.

In summary, the contributions of this paper are as follows:
(1) we formally define public information exposure detection;
(2) we develop a new holistic methodology for analyzing an
individual’s web footprints that incorporates new operators for
probabilistic closure and join, pattern-based attribute extraction
from text, and rules generated from a population-based infer-
ence engine; (3) we propose different metrics for quantifying
information exposure and identifying risky attributes; and
(4) we evaluate our framework on thousands of public profiles
gathered from four social networking sites and show that an
adversary can generate a cross-site web footprint with high
accuracy when using our framework.

II. RELATED WORK

There has been an emerging interest in linking individuals
across online social networks (OSNs) [4, 7–11]. Goga et al. [4]
introduce a correlation attack that attempts to find accounts on
different social networking sites belonging to the same person.
The three features used in the attack are post location (using
geo-location information), post timestamp, and the writing
style of the user. Iofciu et al. [8] have a similar study that uses
username across social tagging systems (Flickr, Delicious, and
StumbleUpon) to map users across sites. Both of these works
differ from ours because they make the assumption that the
attacker is a ‘pseudo-friend’—i.e., having certain knowledge
about one (or more) of the social network account ids on one
of the sites. In our adversarial model, we assume knowledge
of common, publicly available attributes, but not of user ids.

Similar in spirit to our work, Irani et al. [9] introduce the
idea of a social trace that maps data across social networks.
They show that using one social network username across
websites increases the amount of leakage considerably. Jain
and Kumaraguru [10] propose the Finding Nemo system that
uses user profile information, a user’s network, and user gener-
ated content to map users across Twitter and Facebook. Unlike
our work, the authors do not consider text data or inference
using online population data. Finally, Moore et al. [12] con-
sider different population-based inference algorithms (Naive
Bayes, LDA, and Association Mining) for determining public
attribute values of approximately 100,000 users on LinkedIn
and Google+. While that work focuses on understanding the
accuracy of different algorithms for population-based inference
of publicly available attributes (not individuals), our work uses
population inference in conjunction with probabilistic infer-
ence logic and pattern-based attribute extraction to conduct a
more comprehensive, larger inference process for individuals.

Re-identification is a closely related problem to information
exposure detection [2, 5, 13, 14, 18]. In re-identification,
the goal is to match anonymized personal data with their
true owners. In this paper, rather than evaluating how well

data anonymization techniques can protect privacy, we mea-
sure the amount of privacy loss due to publicly exposed
non-anonymized data (for example, the attribute values that
appear in public profiles on OSNs). We also note that our
techniques are related in their goals to work that aims to build
more privacy-preserving social networking services [1, 3].
In contrast to these approaches, our research addresses the
problem of quantifying and reducing exposure due to existing
social networking services. Our approach further differs from
previous work in its ability to quantify information exposure
at multiple resolutions, focusing both at the site-level (micro-
analysis) and at Internet-scale (macro-analysis).

Finally, a body of existing work explores information
leakage due to side channels in OSNs. Song et al. [16] observe
that URL shortening services (e.g., bit.ly) offer click analytics
that reveal user agent (browser) information about users who
clicked on links; an adversary can leverage this information
to infer which Twitter users clicked on shortened URLs.
Earlier work by Humbert et al. [7] demonstrates that private
profiles on OSNs can be discovered by targeting crawls based
on the profile owner’s geographic region. While the above
techniques focus on exploiting information leakage—i.e., data
that are exposed through accidental channels—we address a
more basic question: how much information is revealed by
directly publishing data on the web.

III. PROBLEM DEFINITION

We consider a person P about whom an adversary is
attempting to learn information. For clarity, we omit explicitly
denoting P in our notation. We assume that P has publicly
revealed certain features or attributes (e.g., name and age) or
that such information is otherwise publicly available, perhaps
from a data aggregation site. Some of the revealed information
may be sensitive, e.g. birthday or income. If a revealed
attribute cannot be matched to P , it is considered hidden. Let
A = {A1,A2, . . . ,Am} be the set of P ’s attributes. For each
attribute Ai, P has one or more values αi = {α1

i , α
2
i , . . . , α

h
i }.

As shorthand, we denote P ’s attribute value(s) for an attribute
Ai as αi, and all attribute values belonging to P (across all
attributes) as α. When referring to both the attribute (Ai) and
its value (αi) as a pair, we will use the notation ⟨Ai, αi⟩.

A. Adversary Model

We frame the public information exposure detection prob-
lem in the context of an adversary who wishes to (1) gather
publicly available information about a target individual P ,
and (2) infer additional attribute values about P by applying
inference techniques to the publicly available information.

We assume that the adversary uses publicly available infor-
mation about P to form beliefs about P that are not originally
known to the adversary. We model a belief Bj = ⟨Ai, αji , conf⟩
as a triple consisting of an attribute, a single attribute value,
and a confidence. Conceptually, the confidence conf ∈ (0,1]
is an assessment as to the likelihood that a true value for Ai
is αi, where a confidence of 1 denotes certainty. To avoid
maintaining beliefs that are weak, we maintain only beliefs
that have a confidence above a threshold.

To learn information about P , we allow the adversary to
query a set of sites S = {s1, s2, . . . , sq}. For example, these



sites could consist of microblogging sites, online social net-
works, search engines, and data aggregation sites. Importantly,
we restrict the adversary to access only publicly available
information from the sites. We also assume that the adversary
is not connected to P in a social network or otherwise has
special access to P ’s information that is not available to the
general public Although the adversary does not have to obey
sites’ acceptable use policies, he cannot directly access the
sites’ backend databases and must learn information about P
by using sites’ exposed APIs or by screen scraping.

We assume that the adversary has some background knowl-
edge about P (e.g., P ’s name). The set of attributes and
associated attribute values known a priori to the adversary
is referred to as the initial attribute value core, Bcore, where
Bcore = {B1, . . . ,Bn} and ∀Bi ∈ Bcore, Bi = ⟨Ai, αji ,1⟩ and
αji ∈ α. In other words, this attribute value core is a set of
correct beliefs about the targeted user known a priori by the
adversary. Because these beliefs are given and assumed to
be true, they have a confidence of 1. The adversary’s goal,
therefore, is to determine hidden attributes (initially unknown
to him), α ∖ Bcore, of person P .

B. Web Footprint

The web footprint of P , which we denote as W , is
composed of a set of beliefs held by the adversary: W =
{B1,B2, . . . ,Bw}. We define Btrue to be the subset of beliefs
in W that are correct. That is, Btrue = {⟨Ai, αji , conf⟩ ∈ W ∶
αji ∈ α}. Note that, Bcore ⊆ Btrue ⊆W . The adversary discovers
the attributes in W that are not in Bcore by applying different
matching and inference rules to Bcore, as well as obtaining
information about the service population by querying online
services. It is the adversary’s goal to determine as many
attribute values as possible in α with high confidence (that
is, to correctly learn the attribute values belonging to P that
are not present in Bcore).

C. Information Exposure and Information Accessibility

We let σX(sj) = pj = {p1j , p2j , . . . , ptj} represent the set of
profiles returned by a query against site sj using the attribute
values in set X . Each profile is a set of attribute/attribute
value pairs, with the possibility that a given attribute may
have multiple values belonging to a user of the site. For multi-
valued attributes, e.g., school-attended, each attribute value is
represented as a separate belief. Note that since many users
may have the attribute values specified in X , multiple profiles
may be returned for a given query. For simplicity, we assume
that if X ⊆ Bcore, then exactly one of the profiles in σX(sj)
belongs to the user P (i.e., the user has a single profile on the
queried site). Let ptrue

j be P ’s profile on sj .

Information exposure occurs if the adversary identifies
attribute values in profile ptrue

j that (1) are not in Bcore, and
(2) have confidences (conf) above a threshold., θ, where θ is
significantly higher than a random guess.

To reflect the relative sensitivity of attributes, we define
a weight function WEIGHT ∶ A→ [0,1] that quantifies an at-
tribute’s importance relative to the other attributes. Hence,
∑Ai∈A WEIGHT(Ai) = 1. For ease of exposition, we assume
that WEIGHT is fixed for all users of the system. (We note,

however, that adjusting WEIGHT for each person requires only
a minimal modification to our model.)

We define the information accessibility score χ due to
the web footprint as the weighted sum of the learned beliefs
and confidence values: χ = ∑

⟨Ai,α
j
i ,conf⟩∈W∖Bcore

(WEIGHT(Ai)⋅
conf). If W ∖ Bcore = ∅, we set χ = 0.

We remark that χ ≥ 0, with larger values reflecting higher
accessibility. Notice that χ does not incorporate accuracy.
Instead, it represents the ease of determining information and
the adversary’s confidence in the non-core attribute values
discovered. To measure the accuracy of these beliefs, we define
the information exposure score Sc to be the fraction of beliefs
inW that are accurate, weighted by the attributes’ importance:

Sc(W) =
∑
⟨Ai,α

j
i ,conf⟩∈Btrue

WEIGHT(Ai)
∑
⟨Ai,α

j
i ,conf⟩∈W WEIGHT(Ai)

As will be shown in Section V, these two scores provide
a clear assessment of the adversary’s discovered knowledge.

IV. PUBLIC INFORMATION EXPOSURE DETECTION

We now formally define this specific data mining privacy
problem related to publicly available data and refer to it as
public information exposure detection or PIE detection.

Definition 1: Public Information Exposure Detection:
Using a set of prior knowledge (Bcore) for a given person P ,
identify any attribute values (α∖Bcore) belonging to P across
different sites S with confidence greater than a threshold θ.

In other words, the goal of public information exposure
detection is to determine correct attribute values with high
confidence (i.e., having a confidence above θ) using prior
knowledge Bcore and publicly accessible data obtained from
different websites S.

A. Algorithm Overview

Our approach augments traditional structured attribute in-
ference with three complementary methods: pattern-based in-
ference (Section IV-C), distributed probabilistic-join inference
(Section IV-D), and population-based inference (Section IV-E).
Our high level algorithm for PIE detection (shown in Algo-
rithm 1) collects information about a person from different
public websites. The input to our algorithm is the set of
core attributes, Bcore, the minimum confidence thresholds1 for
probabilistic joins (θcross-site) and population inferences (θsite),
and the set of public websites to search, S. The output of the
algorithm for a person P is the web footprint W .

The algorithm begins by assigning the initial set of beliefs
based on Bcore to the web footprint W (line 4). Each of these
beliefs has a confidence of 1. We also initialize a candidate
set of beliefs Bcand (line 5) and a set p of profiles (line 6). In
lines 7 and 8, the algorithm queries each site to find profiles
that contain the attribute values in Bcore, adding the resulting
profiles to set p. Next, in lines 9–11, we iterate through all the
unstructured (text) attributes in any of the returned profiles and

1Algorithm 1 permits different thresholds for beliefs derived using proba-
bilistic joins and population inferences. For clarity, our definition of informa-
tion exposure detection (Section III-C) assumed a single threshold θ.



Algorithm 1 Information Exposure Detection Algorithm

1: Input: Bcore, θcross-site, θsite, S
2: Output: W
3:
4: W ← Bcore
5: Bcand ← ∅
6: p← ∅ ▷ set of profiles to consider
7: for all si in S do ▷ find profiles on site si that match
Bcore

8: p← p∪ GATHER PROFILES(Bcore, si)
9: for all pi in p do ▷ infer values from unstructured text

10: for all ⟨Aj , αj⟩ in pi s.t. Aj is an unstructured attribute
do

11: EXTRACT STRUCTURED VALUES(αj , pi)
12: repeat
13: for all αij in p do ▷ iterate over values in all profiles
14: Bcand ← DETERMINE DEPENDENCIES(αij , p)
15: W ← UPDATE WEBFOOTPRINT(Bcand, θcross-site)
16: Bcand ← Bcand−W ▷ remove beliefs where

conf ≥ θcross-site

17: for all bj in Bcand do ▷ iterate over low confidence
beliefs

18: Bcand ← COMPUTE POPULATION INFERENCE(bj)
19: W ← UPDATE WEBFOOTPRINT(W,Bcand, θsite)
20: until W does not change
21: return W

use our pattern-based attribute detection algorithm (explained
in Section IV-C) to identify and extract missing structured
attribute values. Learned structured values are “inserted” into
the corresponding profiles. At this stage, we have our possible
set of values for the final web footprint.

In lines 13–16, the algorithm applies probabilistic operators
(explained in Section IV-D) to all attribute values in the
collected profile to determine dependencies between attribute
values. Conceptually, the probabilistic operators use site-level
and cross-site inference techniques to (1) infer additional
attribute values and (2) assign confidences to those values.
The resulting set of beliefs are stored in Bcand (line 14) and
added to the web footprint iff the belief’s confidence is at least
θcross-site (line 15).

Then, for the set of beliefs that still have lower confidence,
we use the population inference engine to see if we can
improve our confidence in these different beliefs or learn other
new ones (lines 17–19). After using the population inference
engine (line 18; explained in Section IV-E), the set of beliefs
is rechecked to determine if any additional beliefs should be
added to the web footprint. The above process (lines 12–
20) repeats until no new information can be added to the
web footprint, in which case, the algorithm returns the web
footprint. In what follows, we will use the running example
shown in Table I to explain our approach more clearly.

B. Profile Gathering

This subtask uses attributes in Bcore to (1) query the sites
in S using a public API and/or other techniques (e.g., screen
scraping), and (2) collect the set of matching profiles p from
each site. If an attribute in A contains unstructured data, the

Algorithm 2 Pattern-Based Attribute Detection

1: Input: C, AU
2: Output: P
3:
4: Cseed ← SELECT RELEVANT TEXTS(C,AU)
5: repeat
6: P ← EXTRACT RELEVANT PATTERNS(Cseed)
7: (P,Q)← EVALUATE PATTERNS(P)
8: if Q > Qcontrol then ▷ find more seeds and patterns
9: Cseed ← BOOTSTRAP MORE SEEDS(P)

10: else
11: return P
12: until Cseed = ∅
13: return P

Pattern-Based Attribute Detector attempts to identify structured
data values using patterns. Otherwise, the next step is to begin
the inference process. In our Table I example, the user’s first
and last name are the attributes in Bcore— that is, they are
assumed to be known a priori by the adversary. The other
attributes – city, favorite color, age, state and sports team – are
the ones the adversary is trying to determine. From querying
the known first and last name, three, four, and two records
(profiles) are respectively returned from Sites 1, 2 and 3.

C. Pattern-Based Inference

Much personally identifiable information exists in public
text data (for example, Tweets and blogs). However, these
fields are in their natural language form and are not readily
usable for inference. We use a pattern-based attribute detection
algorithm to extract structured values and represent these
extracted values as attribute-attribute value pairs, ⟨Aj , αj⟩. The
extraction is done from attributes containing plain text found
on different sites, S. Our approach is a bootstrapping approach
[6, 21]: Given a free text corpus C and a set of seed attribute-
attribute value pairs ⟨Aj , αj⟩, which we call instances, the
algorithm outputs an expanded set of new instances ⟨Aj , αj⟩
and a set of lexico-syntactic patterns (P) having a high recog-
nition precision. More specifically, from a few seed instances
of labeled attribute-attribute value pairs in C, the bootstrapping
algorithm first learns new lexico-syntactic patterns around the
seed instances and then uses these new patterns to identify
more instances, i.e., more new attribute-attribute value pairs,
that map to these newly discovered patterns. The process
alternates between using instances to get more patterns and
using newly learned patterns to get more instances until high
quality patterns and instances are no longer findable.

To clarify our approach, we will focus on a particular
pattern-based attribute detector that extracts birthdays from
Twitter tweets. A pattern is a regular expression consisting
of place holders for instances, and other lexico-syntactic el-
ements for the connecting terms between the attribute type
and the attribute value. The place holders in a pattern can
be used to mark and expose the instances of interest. Birthday
extraction was previously used in the research field of question
answering (QA) to answer questions such as “when was
Barack Obama born?” Surface level lexical syntactic patterns
have been hand-crafted to extract birthday from newswire
articles [15]. For instance, two lexicon-syntactic patterns



TABLE I: Example data for web footprint creation.

User ID First Name Last Name City State Favorite Color Age Sports Team

CORE (Bcore) Mary Smith
SITE 1 S1-1 Mary Smith Springfield red 25

S1-2 Mary Smith Springfield red
S1-3 Mary Smith Springfield red 45

SITE 2 S2-1 Mary Smith Seattle WA blue 25
S2-2 Mary Smith MA red 45
S2-3 Mary Smith MA red 45
S2-4 Mary Smith Austin TX green 25

SITE 3 S3-1 Mary Smith MA Patriots
S3-2 Mary Smith WA Seahawks

for birthday question answers are: <NAME> was born in
<BIRTHDATE> ... and <NAME> (... born <BIRTHDATE> ...)
for the following text “Barack Obama was born on August 4,
1961” and “Barack Obama (...; born August 4, 1961)”.

Since tweets are shorter text than traditional news articles,
we expect most tweets to lack complete sentence structure.
However, as will be demonstrated in Section V, using patterns
based on sentences still leads to effective attribute value extrac-
tion. Therefore, given a corpus of tweets C, we begin by split-
ting each tweet into sentences. Each sentence is then parsed us-
ing the Stanford NLP Parser(http://nlp.stanford.edu/software/)
to obtain the part-of-speech (POS) tags and the named entity
(NE) tags. Both of these tags will be used to determine
patterns. We then use a bootstrapping-based approach to find
birthdays from tweets.

A high level description of our approach is shown in
Algorithm 2. Given a corpus C and attribute AU = {birthday},
we begin by extracting all the tweets of a particular user that
are relevant to a particular attribute of interest, AU (line 4).
These tweets become our initial seed tweets (Cseed). In the
case of birthday, one can select the tweets that have the term
‘birthday’ or ‘b-day’ in them. Then the algorithm looks for
relevant patterns in these text instances (line 6). Specifically,
we accomplish this by finding commonalities among a subset
of the instances in Cseed and creating expressions/patterns based
on the common structures. While the initital patterns use
instance values, the patterns are generalized using POS tags in
conjunction with instance values. Table II contains examples of
high precision lexicon-syntactic patterns that are identified us-
ing this approach. For the example tweet – @usera RT @userb:
happy birthday @dindoos !! best wishes for youuuu ;D – the
structured attributes extracted are ⟨birthday person,dindoos⟩
and ⟨friend birthday date,2009-10-01⟩. These patterns are
then evaluated in the corpus to see if expected attribute values
are returned (line 7). A low quality pattern can easily pollute
the instances we would like to extract and the pattern set.
Therefore it is important to control the quality of a new pattern.

Our approach tests the quality of newly learned patterns
using two statistical measures: information gain and point-wise
mutual information. Only patterns that pass a strict pattern
selection threshold Qcontrol can proceed to the next stage. If
the quality of the pattern, Q, is above the minimum threshold,
Qcontrol, then the pattern is retained. This high quality pattern
can then be used to generate more patterns (lines 7 and 8).

We iteratively keep generating patterns, evaluating them, and
then using them to seed more patterns until no additional high
quality patterns can be extracted.

D. Inference Using Distributed Probabilistic Operators

We now add to the core set of beliefs using attribute values
from queried sites (i.e., the profiles in σX ) by introducing
different dependencies and operators. Intuitively, we use these
dependencies and operators to infer attribute values using the
following rules: (1) if attribute values for a particular attribute
are common for a large fraction of profiles in p, those attribute
values can be added to the web footprint (site-level inference),
and (2) using common attribute values across sites, we can
identify additional beliefs (cross-site inference).

Site-level inference. In relational theory, a functional depen-
dency A → B is a mapping between two sets of attributes, A
and B, where the values of B are uniquely determined by the
values of A. Similarly, we define a value matching dependency
aI

θÔ⇒ aJ to be between two sets of values aI and aJ such that
when the values in aI are all considered true, the values in aJ
are determined to be true with a confidence of at least θ. For
example, if {Joe,Smith} 0.85Ô⇒ {male}, then when “Joe” and
“Smith” are the respective values for attributes first and last
name, then the gender attribute value is “male” with confidence
of at least 0.85.2

Our approach finds the value matching dependencies for
person P on a single site sk using values in Bcore as the
determinant, thereby using the set of true beliefs in W to
inform us about other possible beliefs. Using these dependen-
cies, we propose a new operator – probabilistic value closure
– for finding other possible beliefs. Similar to the traditional
relational closure operator, probabilistic value closure begins
with the set Bcore and iteratively adds attribute values with
value matching dependencies to the set. The basic algorithm
proceeds as follows. The probabilistic value closure starts with
M = Bcore. For every value matching dependency a

θÔ⇒ b such
that a is a subset of M and b is not, b is added to M . The
process repeats until no new attribute values can be added
to M . We denote the probabilistic value closure of Bcore as
{Bcore}+θ . Once {Bcore}+θ is computed, the non-core attribute
value in {Bcore}+θ can be added as beliefs to W .

2We pause to mention that a parallel mapping can exist between multi-
valued dependencies and value matching dependencies.

http://nlp.stanford.edu/software/lex-parser.shtml


TABLE II: Lexicon-syntactic patterns for BIRTHDAY.

Pattern-1: Someone elses bday w/ mention {happy∣Happy∣HAPPY }{birthday∣Birthday∣BIRTHDAY }@SOMEONE
Pattern-2: Someone elses bday {@SOMEONE}

n
∗ {happy∣Happy∣HAPPY }

in retweet w/ mention {birthday∣Birthday∣BIRTHDAY } ∗ {@SOMEONE}
m

Pattern-3: Person’s own birthday my birthday is {in∣on∣ε}[T imeExpression]

For our example in Table I, on site 1 for Bcore =
{Mary,Smith}, {Bcore}+θ = {Mary,Smith,Springfield, red}.
From this, the following beliefs are added to the web footprint:
⟨city,Springfield,1⟩ and ⟨favorite color, red,1⟩.
Cross-site inference. Inorder to infer attribute values that
are shared across sites in p, we also introduce a web footprint
join operator. Let each site sk be viewed as a virtual relation
containing a tuple for each profile pik. The web footprint join
operator pairs tuples from site sk with tuples from site sj
using an equity predicate on common attributes. A resulting
relation R contains tuples having the same attribute values for
common attributes. The probabilistic value closure can then
be computed on the attribute values in W using relation R
to identify new beliefs that have high confidence and should
be added to W . Conceptually, this approach repeatedly cre-
ates temporary relations based on common attribute, attribute
values pairs found across different sites.

More specifically, using the web footprint, incompatible
profiles (those with conflicting attribute values) are initially
removed from p. The remaining profiles on each site represent
a virtual relation containing tuples with useful data to infer.
These virtual relations are joined to each other using the beliefs
in W . Then a probabilistic value closure is computed on the
common attribute, attribute value pairs. If the confidence in
any of the identified pairs is above θcross-site, a new belief is
added to W . This process continues until all the pairs of sites
have attempted to generate rules and no additional rules are
possible to generate.

Returning to our example, after the closure operation is
completed at each site, we generate a virtual relation for each
site is created. The virtual relations for sites 1, 2, and 3 contain
3, 2, and 2 tuples in them, respectively. A web footprint join
for the virtual relations on site 1 and site 2 results in adding
⟨age,45⟩ and ⟨state,MA⟩ to W . Joining sites 2 and 3 results
in the Patriots being added to W , while joining sites 1 and
3 results in the empty set. Using single-site and cross-site
inference, the adversary increases the target’s web footprint.

E. Population-Based (Macro-Analysis) Inference

In this section, we propose using frequent patterns of
attribute values of a site’s broader population to infer some
common attributes of P . We accomplish this by creating an
inference engine that samples subpopulations from different
sites and uses the attribute values of these subpopulations to
infer additional attribute values for P . Algorithm 3 describes
steps the population inference engine takes to generate rules
that can be used as beliefs in W . For each site specific
population database DS , the inference engine generates rules
by using the core beliefs as input parameters for identifying
rules that apply to P and have strong confidence across a large,
random population sample. The initial construction of the
population inference engine uses Latent Dirichlet Allocation

(LDA) and Association Rule mining to generate rules that
represent the sample population.

The LDA inference considers each individuals profile as
a document and each attribute value as a concept or word. In
this way, the LDA model is built so that each person is viewed
as a mixture of attribute based topics. When beliefs are input,
this method searches for users with a ‘similar’ distribution
over the topics. Attributes are inferred from the k users that
are most similar using a majority vote. The association rule
inference uses population profiles to generate association rules.
Each individual in the population is viewed as a transaction
and all the attributes for the individual are viewed as items.
Large itemsets are found using all the transactions in the
database. Then association rules are generated and stored with
their support and confidence. When beliefs are input, rules
containing antecedents matching the beliefs are identified. If
the identified rules have a high support and confidence, the
consequent of the rule is returned as a belief.

For our example, suppose the population database stores
the following association rule inference - ⟨firstname,Mary⟩
implies ⟨gender, female⟩ 90% of the time. This rule can be
translated to a belief for W since Mary is in our core set of
beliefs. The population inference engine is constructed offline
and is updated only periodically. The adversary thus can apply
the population-based inference engine at low amortized cost.

V. EVALUATION

We now evaluate our approach to public information expo-
sure detection. We first measure the information accessibility
and information exposure of our constructed web footprints
using public data sources. Then we assess our pattern-based
attribute extraction and our population inference engine.

Information sources. We collected public profile data for
our web footprint construction from Google+, LinkedIn, Twit-
ter, and FourSquare. Our ground truth data set maps actual
accounts on different sites for specific individuals. To con-
struct the ground truth, we used the about.me API3; about.me

3http://about.me/developer/api/

Algorithm 3 Population Inference Computation

1: Input: Bcore
2: Output: Bpop
3:
4: Bpop ← ∅
5: for all di in DS do
6: R ← LDA(Bcore, di) ▷ Construct rules from LDA, etc.
7: R ← R⋃ASSOCIATION(Bcore, di)
8: Bpop ← Bpop⋃ TRANSLATE RULES(Bcore,R)
9: return Bpop

http://about.me/developer/api/


TABLE III: Ground truth statistics.

Site # of Profiles # of Ground Truth Profiles
Google+ 264,266 12,964
LinkedIn 71,253 50,109
Twitter 73,439 3916
FourSquare 112,764 6352

TABLE V: Number of True Beliefs

Initial Beliefs (Bcore) Gold PIE
first name, last name 2 6
first name, last name, gender 3 7
first name, last name, location 3 10
first name, last name, education 4 11
first name, last name, city 4 27
first name, last name, relationship status 4 13
first name, last name, birthday 4 11
first name, last name, college 4 6

offers its users the ability to publicly advertise their unique
identifiers for their social media accounts. Because users post
this information, e.g. Twitter handle, themselves, we assume
it to be accurate.

Table III summarizes the number of profiles collected for
each site and the number of ground truth individuals for
each site. Not all individuals have accounts on all four social
media sites; 1543 ground truth individuals have accounts on
all four sites. Unless otherwise indicated, the experiments in
Section V-A use this subset of data We pause to mention that
in the case of Twitter, the 1543 profiles results in extracting
over 400,000 tweets.

Population inference engine data. Our population infer-
ence engine is based on 100,000 public profiles from Google+
and 49,823 public profiles from LinkedIn. This data set was
collected by querying each service for random names. All
returned profiles were added to our corpus for the population
inference engine. We emphasize that the collection process for
the inference engine does not include any ground truth data
that we obtained from about.me.

A. Public Information Exposure and Accessibility

In this experiment we evaluate the accessibility and ac-
curacy of the constructed web footprints. For all the PIE
experiments, we assume that the attributes have equal weights
and unless otherwise specified, θsite = 0.9 and θcross-site = 0.3
and θpop = 0.6. We experimented with different threshold
values ranging from 0.5 to 1 for θsite, 0.15 to 0.8 for θcross-site,
and 0.3 to 0.9 for θpop. While many of the thresholds led
to similar accuracy results, the variability in the TP/FP and
TP/TP-Max ratios was more significant and led to the specified
thresholds. For brevity, we do not show this analysis.

We test information exposure breaches by considering
different initial Bcore sets. Here we focus on the ground truth
users that are on all four sites. In Table IV we report three
PIE scores for each attribute core averaged over all of the
ground truth users: the number of true beliefs, information
accessibility, and information exposure. Recall that information
accessibility is the weighted sum of the learned beliefs and
the confidence values, and the information exposure score is
the fraction of beliefs in W that are accurate, weighted by

attribute importance. We see that the exposure for this group
of individuals is between 0.83 (when using only name as
the initial core beliefs) and 0.96 (when using name, gender,
city, location, and education). Adding data to the core that is
not considered sensitive increases the information exposure by
approximately 13%. This indicates that the sample of people
with the same name on these social media sites have different
common attribute values. In other words, there is enough
variation in common attributes to uniquely identify people
with high accuracy if the adversary knows a small number of
these attributes. There are times when adding more attribute
values to the initial core reduces the information exposure. This
results because all of our initital 1543 ground truth profiles do
not have all of the same attributes. For example, while 1543
profiles have first and last name, only 1079 have first name,
last name, and education.

We also compare our approach to a gold standard for
accuracy that uses exact-match record linkage (string match-
ing) across profiles from different sites to find new beliefs.
This gold standard adds an attribute, attribute value pair only
if there is a matching attribute value across two sites for a
particular attribute and there is no conflicting attribute value
for that attribute. Otherwise, the attribute, attribute value pair
is not added. This means that the accuracy will be close to one
when we have at least one additional attribute with the name.
Table V shows the comparison between the gold standard and
PIE detection. While the accuracy of the gold standard is
optimal, the number of true beliefs discovered is low, usually
no more than one attribute more than the core. In contrast,
our approach increases the number of true beliefs significantly,
with an increase of between 4 and 24 more beliefs.

When using the population inference engine to infer values
for two attributes, high school attended and state, the inference
accuracy ranged from 0% to 50% depending upon the original
attribute core. The predictive accuracy was similar for both
attributes, but more predictions were made for state as com-
pared to high school. As the attributes in the core increased, the
accuracy of the inferred attributes also improved in most cases.
In general, though, these results are harder to evaluate since
they are only for the subset of predictions for which we had
a ground truth value. The majority of predictions made could
not be validated. This is highlighted in Figure 2. Here the blue
represents true positives, the red represents false positives and
the green represents predictions that could not be validated
based on the data we had. We did consider predictions for
other attributes, including birthday year, college, country, and
occupation, but could not assess the quality since they were
not in the ground truth when predictions were made.

Finally, we consider the contribution of each components of
the framework. The site-level inference and cross-site inference
account for the majority of beliefs discovered (77%), both
pattern-based inference using Twitter data and population-
inference augment the overall set of beliefs by over 20%. In
other words, one fifth of the beliefs would not be discovered
without the combined framework.



TABLE IV: Avg. public info. exposure and accessibility scores for various Bcore.

Initial Beliefs (Bcore) Nbr of True
Beliefs

Information
Accessibility

Info.
Exposure

First Name, Last Name 6 16 0.83
First Name, Last Name, Location 7 11 0.92
First Name, Last Name, Education 10 17 0.85
First Name, Last Name, City 11 16 0.87
First Name, Last Name, Relationship Status 27 38 0.88
First Name, Last Name, Birthday 13 20 0.86
First Name, Last Name, College 11 17 0.87
First Name, Last Name, Gender, Location 6 7 0.9
First Name, Last Name, Gender, Location, City 7 8 0.93
First Name, Last Name, Gender, Location, City, Education 10 11 0.96
F. Name, L. Name, Gender, Loc., City, Edu., Relationship Status 11 12 0.96

0%# 10%# 20%# 30%# 40%# 50%# 60%# 70%# 80%# 90%# 100%#
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Fig. 2: Accuracy of population inference engine when predicting high school attended and state, for various initial beliefs (Bcore).

B. Pattern-Based Attribute Extraction

To evaluate the effectiveness of our pattern-based attribute
extraction approach we use Twitter data. The data set4 used
for this analysis contains 467 million Twitter posts (tweets
and retweets) from 20 million users over a 7 month period
from June 1, 2009 to Dec. 31, 2009. Each post includes the
following attributes: the author of the post, the time of the post,
and the content of the post. For this analysis, we sampled a
four hour period (12 am to 4 am) on Oct. 1 from the initial
data set. During this period, there were 549,757 posts.

We extracted 5 attributes from these posts: birth date,
birthday person, sports team, location, and brand. While oth-
ers could also have been extracted, these attributes provided
opportunities to connect to data on other sites. For all of these
experiments, we set the pattern selection threshold Qcontrol to
0.5. As mentioned in Sec. IV-C for birthday attributes, we
begin by searching for tweets containing different variations of
the term birthday. For the location attribute, we began with 239
countries and 8609 city names (this list is based on locations
of different airports around the world). For the brand attribute,
Forbes’ world’s most valuable 100 brands (as of Nov. 2013) are
used for pattern-based attribute detection. Finally, for the sports
team attribute, we use 218 US and Canadian sports teams from
12 leagues for our initial attribute values.

For the tweets generated by this set of users, over 45,000
structured attributes were extracted using our pattern-based

4http://snap.stanford.edu/data/twitter7.html

attribute detection algorithm. Our experiments show that the
number of birthday tweets far out-paced the number of tweets
with recognizable locations and brands (see Figure 3). This
is surprising since birthday is considered a more sensitive
attribute than location or brand.

In order to evaluate the precision of the extracted attributes
(i.e., did we actually find a birthday), we manually examined
and annotated a subset of the tweets. For those patterns with
100 or fewer tweets, we manually annotated all of them. For
patterns with more than 100 tweets, we randomly selected
100 tweets to annotate and evaluated the precision based on
that subsample. Table VI shows the attributes, the pattern, the
number of tweets with the pattern in our subsample, and the
extraction precision. Our precision is generally above 85%,
with exceptions occurring for birthday pattern 2 and location.

False positives for the birthday attribute occur when the
user mentioned with the @symbol shares a birthday with

TABLE VI: Coverage & Precision of Pattern-Based Extraction

Structured Pattern # of Posts Precision
Attribute Interpretation w Pattern
Birthday Pattern 1 36 35/36 = 97%
Birthday Pattern 2 207 84/100 = 84%
Birthday Pattern 3 36 33/36 = 92%
Brand Concern/interest in brand 11,095 87/100 = 87%
Sports team Interest in sport’s team 572 99/100 = 99%
Location Visited location 34,296 51/100 = 51%

http://snap.stanford.edu/data/twitter7.html


Fig. 3: Number of structured attribute values (y-axis) extracted from
tweets organized by pattern type (x-axis).

someone else, leading to confusion about who is actually
celebrating the birthday. For the location attribute we are
interested in identifying locations visited by the tweeter.
For the hand-validated sample, the tweeter had visited the
location mentioned in the tweet approximately half of the
time. Therefore, even though the locations extracted from the
tweets are valid locations, our low precision indicates that
we cannot assume the location is one visited by the tweeter.
More generally, from our experiments, we see that extracting
structured attributes unstructured text not only increases the
number of available attributes for inference, it also increases
a user’s overall exposure.

VI. CONCLUSION

This paper introduces methods for determining the amount
of information that can be ascertained using only publicly
accessible data. In particular, we contribute (1) a formalism for
reasoning about information exposure due to publicly available
information, (2) a framework for determining a user’s web
footprint—a set of beliefs about a user’s attributes that may
be inferred by an adversary using only public sources of
information, and (3) an extensive empirical analysis across
multiple social networking sites that highlights how easy it
is to reidentify people using very common, public attributes.
Although we frame the PIE detection problem in an adversarial
context, we emphasize that the techniques can equally be
applied by individuals to assess their own exposure. This paper
serves as a blueprint for making the risks of data leakage
more clear and transparent to web users. Our hope is that
this will encourage those with high information exposure and
accessibility scores to reduce the amount of information they
publicly expose on social media sites.
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