
1

1

Efficiency –

Index Pruning & Query Processing

(COSC 488)

Nazli Goharian

nazli@cs.georgetown.edu

© Goharian, Grossman, Frieder, 2002, 2012

2

Efficiency Techniques

• Indexing

• Compression

Index Pruning (Top Doc)

Efficient Query Processing

Duplicate Document Detection

2

3

Index Pruning

(Top Doc)

• Instead of retrieving the whole posting list,

retrieve the top x documents

• Documents are ordered by a weight (tf) in a PL

• Term specific pruning vs. uniform pruning

• A separate structure with sorted, truncated posting

lists may be produced.

 Experimentation results: 70% of index achieves similar average

precision as full index

4

Inverted & Pruned Indices

t1

t2

D1 5 D2 10

D1 5

D500 35

Inverted Index

D35 8

Pruned Index (D = 2)

t1

t2

D500 35

D35 8 D1 5

D2 10
Truncated

3

5

Pruned Index Summary

• Pro

– Avoids need to retrieve the entire posting list

– Dramatic savings on efficiency for large

posting lists

• Con

– Not feasible for Conjunctive queries

6

Efficient Query Processing

via Partial Processing

• Improving query run-time by partial result set

retrieval

• May or may not need modification to inverted index

– Process least frequent terms first

– Process least frequent terms only (Query Thresholds)

4

7

Processing Least Frequent Terms First

• Process terms in “goodness” order

– e.g., idf , qtf, tfmax .idf, ….

– using top 25%-75% no degradation in some Trec benchmark
datasets

• Terminate processing after d documents are assigned
non-zero scores, OR

• Continue processing for the above d non-zero scores

with remaining query terms. Options:

– Treat remaining terms as a conjunctive (AND) condition
• Organize the index such that to support conjunctive processing

– Traditional vector space disjunctive (OR)

8

Modifying Inverted Index to

Support Fast Scanning

An approach:

• Assumption: Posting list is ordered based on doc id.

– Partition the posting and add pointers to each partition from

the previous partition.

– Find the partition of document x from list d (see last slide),

by checking the first doc id of two consecutive partitions.

– If doc x is not found, jump to next partition. Otherwise, scan

current partition.

5

9

Query Threshold

• Consider a query with terms t1, t2, t3, ..., tn.

• Define a threshold as the percentage of terms

taken from the original query in a newly

created reduced query.

term1

term2

term3

term4

term5

term6

term7

term8

term9

term10

 threshold = 20%

 threshold = 50%

 threshold = 80%

10

Relevant Retrieved for
Varying Query Thresholds

831

1505

1657
1675

1856
2119 2138

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

Query Threshold (Percent)

R
e
le

v
a
n

t
R

e
tr

ie
v
e
d

6

11

Run Time as a Function of

Query Thresholds

475 950 1,238 1,736
5,215

13,181

33,989

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100

Query Threshold (Percent)

C
P

U

12

Relevant New Documents

Per CPU Cycle

Threshold

Relevant

Retrieved

CPU

Cycles

New Relevant

Docs per Cycle

10 831 475 1.75

20 1505 950 1.58

25 1601 1238 1.29

33 1657 1736 0.95

50 1856 5215 0.36

75 2119 13181 0.16

100 2138 33989 0.06

7

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P

r

e

c

i

s

i

o

n

10

20

25

33

50

75

100

Precision/Recall

14

Query Threshold Summary

• Pro

– Avoids large posting lists.
• Dramatic savings on efficiency when large posting list is not

retrieved.

– Effectiveness does not degrade (as long as we do not
threshold too much) because we are omitting only those
terms with long posting lists.

• Con

– Still can have some very long posting lists.

– May miss some good documents, affecting Recall.

